Features

■ Excellent I_{FT} stability—IR emitting diode has low degradation
■ High isolation voltage-minimum 5300 VAC RMS
■ Underwriters Laboratory (UL) recognizedFile \#E90700
■ Peak blocking voltage

- 250V-MOC301XM
- 400V-MOC302XM

■ VDE recognized (File \#94766)

- Ordering option V (e.g. MOC3023VM)

Applications

- Industrial controls

■ Solenoid/valve controls

- Traffic lights
- Static AC power switch
- Vending machines
- Incandescent lamp dimmers

■ Solid state relay
■ Motor control
■ Lamp ballasts

Schematic

*DO NOT CONNECT
(TRIAC SUBSTRATE)

Description

The MOC301XM and MOC302XM series are optically isolated triac driver devices. These devices contain a GaAs infrared emitting diode and a light activated silicon bilateral switch, which functions like a triac. They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 VAC operations.

Package Outlines

1

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Device	Value	Units
TOTAL DEVICE				
$\mathrm{T}_{\text {STG }}$	Storage Temperature	All	-40 to +150	${ }^{\circ} \mathrm{C}$
TopR	Operating Temperature	All	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	All	260 for 10 sec	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Range	All	-40 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISO }}$	Isolation Surge Voltage ${ }^{(1)}$ (peak AC voltage, $60 \mathrm{~Hz}, 1 \mathrm{sec}$. duration)	All	7500	$\operatorname{Vac}(\mathrm{pk})$
P_{D}	Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient Derate above $25^{\circ} \mathrm{C}$	All	330	mW
			4.4	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
EMITTER				
I_{F}	Continuous Forward Current	All	60	mA
V_{R}	Reverse Voltage	All	3	V
P_{D}	Total Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient Derate above $25^{\circ} \mathrm{C}$	All	100	mW
			1.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
DETECTOR				
$\mathrm{V}_{\text {DRM }}$	Off-State Output Terminal Voltage	MOC3010M/1M/2M MOC3020M/1M/2M/3M	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	V
$\mathrm{I}_{\text {TSM }}$	Peak Repetitive Surge Current (PW = 1ms, 120pps)	All	1	A
P_{D}	Total Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient Derate above $25^{\circ} \mathrm{C}$	All	300 4	mW ${ }^{\circ}{ }^{\circ} \mathrm{C}$

Note:

1. Isolation surge voltage, $\mathrm{V}_{\text {ISO }}$, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified)
Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Typ.	Max.	Units
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	All		1.15	1.5	V
I_{R}	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		0.01	100	$\mu \mathrm{A}$
DETECTOR							
${ }_{\text {dRM }}$	Peak Blocking Current, Either Direction	Rated $\mathrm{V}_{\text {DRM }}, \mathrm{I}_{\mathrm{F}}=0^{(2)}$	All		10	100	nA
$\mathrm{V}_{\text {TM }}$	Peak On-State Voltage, Either Direction	$\mathrm{I}_{\mathrm{TM}}=100 \mathrm{~mA}$ peak, $\mathrm{I}_{\mathrm{F}}=0$	All		1.8	3	V

Transfer Characteristics

Symbol	DC Characteristics	Test Conditions	Device	Min.	Typ.	Max.	Units
I_{FT}	LED Trigger Current	Voltage $=3 \mathrm{~V}^{(3)}$	MOC3020M			30	mA
			MOC3010M			15	
			MOC3021M				
			MOC3011M			10	
			MOC3022M				
			MOC3012M			5	
			MOC3023M				
I_{H}	Holding Current, Either Direction		All		100		$\mu \mathrm{A}$

Notes:

2. Test voltage must be applied within $\mathrm{dv} / \mathrm{dt}$ rating.
3. All devices are guaranteed to trigger at an I_{F} value less than or equal to $\mathrm{max} \mathrm{I}_{\mathrm{FT}}$. Therefore, recommended operating I_{F} lies between max $\mathrm{I}_{\mathrm{FT}}(30 \mathrm{~mA}$ for MOC3020M, 15 mA for MOC3010M and MOC3021M, 10mA for MOC3011M and MOC3022M, 5mA for MOC3012M and MOC3023M) and absolute max $\mathrm{I}_{\mathrm{F}}(60 \mathrm{~mA})$.

Safety and Insulation Ratings

As per IEC 60747-5-2, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Typ.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Main Voltage < 150Vrms		I-IV		
	For Rated Main voltage < 300Vrms		I-IV		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
$V_{P R}$	Input to Output Test Voltage, Method b, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{tm}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	1594			$V_{\text {peak }}$
	Input to Output Test Voltage, Method a, $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{tm}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	1275			$V_{\text {peak }}$
$V_{\text {IORM }}$	Max. Working Insulation Voltage	850			$V_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over Voltage	6000			$V_{\text {peak }}$
	External Creepage	7			mm
	External Clearance	7			mm
	Insulation Thickness	0.5			mm
RIO	Insulation Resistance at Ts, $\mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	10^{9}			Ω

Typical Performance Curves

Fig ure 3. Trigger Current vs. Ambient Temperature

Figure 5. dv/dt vs. Temperature

Figure 2. On-State Characteristics

Figure 4. LED Current Required to Trigger vs. LED Pulse Width

LED TRIGGER WIDTH - PW in $_{\text {(}}(\mu \mathrm{s})$

Figure 6. Leakage Current, $\mathrm{I}_{\mathrm{DRM}}$ vs. Temperature

1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
2. 100x scope probes are used, to allow high speeds and voltages.
3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable $\mathrm{R}_{\text {TEST }}$ allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. $\tau_{R C}$ is measured at this point and recorded.

Figure 5. Static dv/dt Test Circuit

Note:

This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.

Figure 6. Resistive Load

Figure 8. Inductive Load with Sensitive Gate Triac ($\mathrm{I}_{\mathrm{GT}} \leq 15 \mathrm{~mA}$)

In this circuit the "hot" side of the line is switched and the load connected to the cold or ground side.
The 39Ω resistor and $0.01 \mu \mathrm{~F}$ capacitor are for snubbing of the triac, and the 470Ω resistor and $0.05 \mu \mathrm{~F}$ capacitor are for snubbing the coupler. These components may or may not be necessary depending upon the particular and load used.

Figure 9. Typical Application Circuit

Package Dimensions

Through Hole

Surface Mount

Note:

All dimensions in mm.

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	MOC3010M	Standard Through Hole Device
S	MOC3010SM	Surface Mount Lead Bend
SR2	MOC3010SR2M	Surface Mount; Tape and Reel
T	MOC3010TM	0.4 " Lead Spacing
V	MOC3010VM	VDE 0884
TV	MOC3010TVM	VDE 0884, 0.4" Lead Spacing
SV	MOC3010SVM	VDE 0884, Surface Mount
SR2V	MOC3010SR2VM	VDE 0884, Surface Mount, Tape and Reel

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM ${ }^{\text {™ }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$
Build it Now $^{\text {™ }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	the wer.
CorePLUS ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	Ofranchise
CorePOWER ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	
CROSSVOLT ${ }^{\text {m }}$	Green FPS $^{\text {TM }} \mathrm{e}$-Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBuack ${ }^{\text {TM }}$ M
CTL ${ }^{\text {TM }}$	Gmax ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
Current Transfer Logic ${ }^{\text {TM }}$	GTO'M	RapidConfigure ${ }^{\text {TM }}$	TINYOPTOTM
EcoSPARK ${ }^{\text {® }}$	IntelliMAX ${ }^{\text {tM }}$	()	TinyPower ${ }^{\text {TM }}$
EfficentMax ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	тм	TinyPWM ${ }^{\text {™ }}$
EZSWITCH ${ }^{\text {™ }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
E70	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
E-	MicroFET ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {Tm* }}$
5^{\circledR}	MicroPak ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	μ SerDes ${ }^{\text {TM }}$
	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	
Fairchild ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	$W_{\text {SerDes }}$
Fairchild Semiconductor ${ }^{\text {® }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT'M-3	SerDes
FACT Quiet Series ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-6	UHC $^{\circledR}$
FACT FAST $^{\text {® }}$	OPTOPLANAR ${ }_{\text {® }}{ }^{\text {® }}$	SuperSOT ${ }^{\text {Tm }}$-8	Ultra FRFET ${ }^{\text {Un }}$
FAST ${ }^{\text {FastvCore }}{ }^{\text {TM }}$		SupreMOS ${ }^{\text {TM }}$	VCXTM
FastvCore FETBench ™		SyncFET ${ }^{\text {TM }}$	VisualMax ${ }^{\text {™ }}$
	PDP SPM ${ }^{\text {™ }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {™ }}$ $\mathrm{XS}^{\text {TM }}$
FPS ${ }^{\text {TM }}$	Power-SPM ${ }^{\text {™ }}$	$\square_{\text {GENERAL }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

