SWITCHMODE Series
NPN Silicon Power Darlington
Transistor with Base-Emitter
Speedup Diode
The MJ10023 Darlington transistor is designed for high–voltage,
high–speed, power switching in inductive circuits where fall time is
critical. It is particularly suited for line–operated switchmode
applications such as:
AC and DC Motor Controls
Switching Regulators
Inverters
Solenoid and Relay Drivers
Fast Turn–Off Times
150 ns Inductive Fall Time @ 25C (Typ)
300 ns Inductive Storage Time @ 25C (Typ)
Operating Temperature Range – 65 to + 200C
100C Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Rating
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
Symbol
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
Max
ÎÎÎÎ
Î
ÎÎ
Î
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Collector–Emitter Voltage
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
VCEO
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
400
ÎÎÎÎ
Î
ÎÎ
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCEV
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
600
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VEB
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
80
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak (1)
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
40
80
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (1)
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
20
40
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 25C
@ TC = 100C
Derate above 25C
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
250
143
1.43
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Watts
W/C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
–65 to +200
ÎÎÎÎ
ÎÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
RθJC
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
0.7
ÎÎÎÎ
ÎÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering
Purposes: 1/8 from Case for 5 Seconds
ÎÎÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎ
TL
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
275
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
ON Semiconductor
Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 2 1Publication Order Number:
MJ10023/D
40 AMPERE
NPN SILICON
POWER DARLINGTON
TRANSISTOR
400 VOLTS
250 WATTS
MJ10023
CASE 197A–05
TO–204AE (TO–3)
100 15
MJ10023
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎ
ÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 100 mA, IB = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎ
Î
Î
Î
ÎÎÎ
400
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 150C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICEV
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.25
5.0
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCE = Rated VCEV, RBE = 50 , TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICER
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
5.0
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 2.0 V, IC = O)
ÎÎÎÎÎ
ÎÎÎÎÎ
IEBO
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
175
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with Base Forward Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
IS/b
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
See Figure 13
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
RBSOA
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
See Figure 14
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 10 Adc, VCE = 5.0 V)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎÎ
Î
Î
Î
ÎÎÎ
50
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
600
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 20 Adc, IB = 1.0 Adc)
(IC = 40 Adc, IB = 5.0 Adc)
(IC = 20 Adc, IB = 10 Adc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
2.2
5.0
2.5
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter Saturation Voltage
(IC = 20 Adc, IB = 1.2 Adc)
(IC = 20 Adc, IB = 1.2 Adc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VBE(sat)
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
2.5
2.5
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Diode Forward Voltage
(IF = 20 Adc)
ÎÎÎÎÎ
ÎÎÎÎÎ
Vf
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2.5
ÎÎÎÎ
ÎÎÎÎ
5.0
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Cob
ÎÎÎ
Î
Î
Î
ÎÎÎ
150
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
600
Î
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
td
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.03
ÎÎÎÎ
ÎÎÎÎ
0.2
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 250 Vdc, IC = 20 A, IB1 = 1.0 Adc,
VBE( ff) =50Vt =50µs
ÎÎÎÎÎ
ÎÎÎÎÎ
tr
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.4
ÎÎÎÎ
ÎÎÎÎ
1.2
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
VBE(off) = 5.0 V, tp = 50 µs,
Duty Cycle 2.0%)
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.9
ÎÎÎÎ
ÎÎÎÎ
2.5
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Duty
Cycle
2.0%)
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.3
ÎÎÎÎ
ÎÎÎÎ
0.9
µs
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(I 20 A V 250 V I 10A
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.9
ÎÎÎÎ
ÎÎÎÎ
4.4
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(ICM = 20 A, VCEM = 250 V, IB1 = 1.0 A,
V
BE(off)
= 5 V
,
T
C
= 100C
)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.6
ÎÎÎÎ
ÎÎÎÎ
2.0
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
BE(off) =
5
V
,
T
C =
100 C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tfi
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.3
ÎÎÎÎ
ÎÎÎÎ
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(I 20 A V 250 V I 10A
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.0
ÎÎÎÎ
ÎÎÎÎ
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(ICM = 20 A, VCEM = 250 V, IB1 = 1.0 A,
V
BE(off)
= 5 V
,
T
C
= 25C
)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.3
ÎÎÎÎ
ÎÎÎÎ
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
V
BE(off) =
5
V
,
T
C =
25 C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tfi
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.15
ÎÎÎÎ
ÎÎÎÎ
µs
(1) Pulse Test: PW = 300 µs, Duty Cycle 2%.
MJ10023
http://onsemi.com
3
, COLLECTOR CURRENT (A)µICVCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
1.0 2.0 5.0 400.4 10 1.0
300
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
1.0 2.0 5.0 40
200
50
0.4
Figure 2. Collector Saturation Region
IC, COLLECTOR CURRENT (AMPS)
5.0
2.1
1.8
0.9
0.6
Figure 3. Collector–Emitter Saturation Voltage
IC, COLLECTOR CURRENT (AMPS)
5.0
0.01
Figure 4. Base–Emitter Saturation Voltage
IB, BASE CURRENT (AMP)
0.1 10
4.5
0.5
hFE, DC CURRENT GAIN
VCE = 5 V
0.3
IC = 10 A
VBE(sat), BASE-EMITTER
4.5
VR, REVERSE VOLTAGE (VOLTS)
20 100
400
-0.2
Figure 5. Collector Cutoff Region
VBE, BASE-EMITTER VOLTAGE (VOLTS)
102
101
10-1
Figure 6. Cob, Output Capacitance
104
40
103
100
0 +0.2 +0.8
VCE = 250 V
TJ = 125°C
100°C
75°C
25°C
C, CAPACITANCE (pF)
100
300.4 10
2.0 10 4020
+0.6
200
100
50
4002005010
IC/IB = 10
TJ = 100°C
TJ = 25°C
5.02.01.00.50.20.02 0.05
4.0
3.5
3.0
2.5
2.0
1.5
1.0
1.2
1.5
2.4
2.7
3.0
2.1
1.8
0.9
0.6
0.3
1.2
1.5
2.4
2.7
3.0
TJ = 100°C
IC = 20 A
VCE @ 100°C
VCE @ 25°CVBE @ 100°C
VBE @ 25°C
20
IC = 40 A
20
IC/IB = 10
+0.4
TYPICAL ELECTRICAL CHARACTERISTICS
MJ10023
http://onsemi.com
4
Table 1. Test Conditions for Dynamic Performance
VCEO(sus) RBSOA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING
INPUT
CONDITIONS
CIRCUIT
VALUES
TEST CIRCUITS
20 1
0
PW Varied to Attain
IC = 100 mA
TURN–ON TIME
IB1 adjusted to
obtain the forced
hFE desired
TURN–OFF TIME
Use inductive switching
driver as the input to
the resistive test circuit.
t1 Adjusted to
Obtain IC
t1Lcoil (ICM)
VCC
t2Lcoil (ICM)
Vclamp
Test Equipment
Scope — Tektronix
475 or Equivalent
RESISTIVE TEST CIRCUIT
2
IB1
1
2
5
V
INDUCTIVE TEST CIRCUIT
Lcoil = 10 mH, VCC = 10 V
Rcoil = 0.7
Vclamp = VCEO(sus)
Lcoil = 180 µH
Rcoil = 0.05
VCC = 20 V
VCC = 250 V
RL = 12.5
Pulse Width = 25 µs
1
IN
PUT
2
Rcoil
Lcoil
VCC
Vclamp
RS =
0.1
1N4937
OR
EQUIVALENT
TUT
SEE ABOVE FOR
DETAILED CONDITIONS
t1
ICM tf
Clamped
tf
t
t
Vclamp
t2
TIM
E
VCEM
OUTPUT WAVEFORMS
1
2
TUT
RL
VCC
MJ10023
http://onsemi.com
5
Figure 7. Inductive Switching Measurements Figure 8. Typical Peak Reverse Base Current
10
0
VBE(off), REVERSE BASE VOLTAGE (VOLTS)
1.0 2.0 3.0 4.0 8.0
7.0
5.0
3.0
IB2(pk), BASE CURRENT (AMPS)
IC = 20 A
IB1 = 1 A
Vclamp = 250 V
TJ = 25°C
9.0
8.0
6.0
4.0
2.0
1.0
7.06.05.0
Figure 9. Typical Inductive Switching Times
2.0
0
VBE(off), BASE-EMITTER VOLTAGE (VOLTS)
01.0 2.0 3.0 4.0 8.0
1.0
0.75
0.5
ICM = 20 A
IB1 = 1 A
VCEM = 250 V
1.75
1.25
0.25
7.06.05.0
tsv @ 100°C
tsv @ 25°C
tc @ 100°C
tc @ 25°C
t, TIME (s)µ
tfi
trv
90% IB1
ICM VCEM
90% VCEM 90% ICM
10%
ICM 2% IC
tsv tti
tc
TIME
Vclamp
10% VCEM
1.5
MJ10023
http://onsemi.com
6
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% VCEM
trv = Voltage Rise Time, 1090% VCEM
tfi = Current Fall Time, 9010% ICM
tti = Current Tail, 102% ICM
tc = Crossover Time, 10% VCEM to 10% ICM
An enlarged portion of the inductive switching waveform
is shown in Figure 7 to aid on the visual identity of these
terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN–222A:
PSWT = 1/2 VCCIC(tc)f
In general, trv + tfi tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified a t 2 5C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user orientated specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100C.
2.0 5.0 10 20 4
0
0.4 1.0
t, TIME (s)µ
0.02
0.05
0.1
0.2
0.5
1.0
2.0
Figure 10. Typical Turn–On Switching Times
IC, COLLECTOR CURRENT (AMPS)
2.0 5.0 10 20 40
Figure 11. Typical Turn–Off Switching Times
IC, COLLECTOR CURRENT (AMPS)
t, TIME (s)µ
Figure 12. Thermal Response
t, TIME (ms)
1.0
0.010.1
0.1
r(t), TRANSIENT THERMAL
1.0 10 100 10000
RθJC(t) = r(t) RθJC
RθJC = 0.7°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RθJC(t)
P(pk)
t1
t2
SINGLE PULSE
RESISTANCE (NORMALIZED)
1000
0.02
0.05
0.1
0.2
0.5
1.0
2.0
tf
VCC = 250 V
IC/IB1 = 20
TJ = 25°Cts
td
tr
0.4 1.0
VCC = 250 V
IC/IB1 = 20
VBE(off) = 5 V
D = 0.5
0.5
0.2
0.05
DUTY CYCLE, D = t1/t2
0.2
0.1
RESISTIVE SWITCHING
MJ10023
http://onsemi.com
7
The Safe Operating Area figures shown in Figures 13 and 14
are specified for these devices under the test conditions
shown.
ICM
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
2.0 5.0 10 20 501.0
10
1.0
0
VCEM, PEAK COLLECTOR-EMITTER VOLTAGE (VOLTS)
100 300 500
40
70
TC = 25°C
60
50
20
IC/IB 20
25°C TJ 100°C
, PEAK COLLECTOR CURRENT (AMPS)
100 200 400
0.1
0.01
dc
IC, COLLECTOR CURRENT (AMPS)
200 400 700
30
10
0
10 µs
(TURN-ON SWITCHING)
50
5.0
0.5
0.05
20
2.0
0.2
0.02
600
100
Figure 13. Maximum Forward Bias Safe
Operating Area
Figure 14. Maximum RBSOA, Reverse Bias
Safe Operating Area
80
TURN-OFF LOAD LINE
BONDING WIRE LTD
THERMAL LTD
SECOND BREAKDOWN LTD
2 V VBE(off) 8 V
RBE = 24
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC – VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 13 is based on TC = 25C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25°C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 13 may be found at
any case temperature by using the appropriate curve on
Figure 15.
TJ(pk) may be calculated from the data in Figure 12. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished b y several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltage–current condition allowable
during reverse biased turn–off. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 14 gives the RBSOA
characteristics.
0
TC, CASE TEMPERATURE (°C)
40 80 120
40
0
100
POWER DERATING FACTOR (%)
80
60
20
200
SECOND BREAKDOWN
DERATING
160
THERMAL
DERATING
Figure 15. Power Derating
MJ10023
http://onsemi.com
8
PACKAGE DIMENSIONS
CASE 197A–05
TO–204AE (TO–3)
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A1.530 REF 38.86 REF
B0.990 1.050 25.15 26.67
C0.250 0.335 6.35 8.51
D0.057 0.063 1.45 1.60
E0.060 0.070 1.53 1.77
G0.430 BSC 10.92 BSC
H0.215 BSC 5.46 BSC
K0.440 0.480 11.18 12.19
L0.665 BSC 16.89 BSC
N0.760 0.830 19.31 21.08
Q0.151 0.165 3.84 4.19
U1.187 BSC 30.15 BSC
V0.131 0.188 3.33 4.77
A
N
E
C
K
–T– SEATING
PLANE
2 PL
D
M
Q
M
0.30 (0.012) Y M
T
M
Y
M
0.25 (0.010) T
–Q–
–Y–
2
1
L
GB
V
H
U
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MJ10023/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland