veartovsier seo nC SEI 8 Dw, OFFSET MAL we OFFSEE MAL t a fr aC ite 2 6 poutput nweR, neuT- Ws WER KeUT- 2 ah as \ L ~ RO VER, output RON ER a 6p) output ieu anew No fot Vs FGFFSET NAL Vy ce. 5 Dcrrser Ma tan sar 3.15% = ma Type TO-99 Minidip $0-8 LS 141 LS 141 TB _ - LS 141A LS 141 ATB - - LS 141C LS 141 CTB LS 141 CB LS 141 CM - LS 8141 _ - LS 8141M LS 8141A - _ LS 8141 AM LS 8141C - - LS 8141 CM SCHEMATIC DIAGRAM Q2 C J [ wed " aw Fee se 4_ 015 + tN Kae ( (8, a4 1 alg RT valle aio $220 Ir s0x0 | ane F 920 joa dr ZA +} }- | Kors eS o6 cI i - air WN aio an Q23 t per ae i Rate }R2 pre i asf, Ref; v ea] at sean [in [Pe : 50en toot : 3 1 $-2083 THERMAL DATA TO-99 | Minidip SO-8 Rtn -amb = Thermal resistance junction ambient max | 155 C/W | 120 C/W | 200* C/W * Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm) 0259 -02 221 4 FzTF-05-10 iekgSensnas2ROO4N,o Laythyfe ISTaG | a 7929225 $ G S SEMICONDUCTOR CORP. ~ ELECTRICAL CHARACTERISTICS (see note) LS 141 LS.141A LS 141 Paramater Test canditions 7 Unit Min.! Typ.| Max. | Min.| Typ.] Max. | Min. | Typ.| Max. Vos Input offset Tamb= 25C voltage Rg = 10k2 1 5 2 6] mV Rg < 502 08 3 mV Tamb= Tmin to Tmax i i Rg <10k2 : 6 7.5) mV Rg <502 4 mv A Vos Input offset | i voltage adjust. | V.= 4 20V : +10 : mV range V,=15V Tamp= 25C 15 {4185 mV AVos Average input AT offset voltage . 15 ae drift ; los Input offset Tamb= 25C 20 ; 200 3 30 20 | 200} nA current Tamb= Tmin to Tmax 85 | 500 70 300} nA Algs Average input nA AT _soffset current 0.5 C drift Ib Input bias Tamb= 25C 80 } 500 30 80 80 | 500] nA current Tamb= Tmin to Tmax 1.5 0.21 0.8] uA Ry Input resistance | Tamp= 25C 03! 2 1 6 0.3 2 MQ Tamb= Tmin tO Tmax 0.5 MQ Vi {nput voltage range Tamb= Tminto Tmax 212 | 13 12 | 13 +12 | 213 v Gy Large signal Tamp= 25C RL>2k2 voltage gain Vg= 15V Vo= 10V | 94 | 106 94 86 | 106 dB Tamb* Tmin to Tmax Re=2k2 Ve= 15V Vo= 10V | 88 30 84 dB Vez tBV 0 Vg= 42V 80 MV, Output volt V.= 15V swing [RL> 10 ke +12] 414 #12 [414 #12 | 214 v Ruz 2k2 210 | 413 10 | 13 10 | 13 Vv Isc Output short Tamb= 25C 25 10 25 35 25 mA circuit current | Tamb= Tmin to Tmax 10 40 mA CMR Common mode | Vs = +20V rejection RgS10k2 Vow=t12V{70 | 90 80 | 95 70 | 90. dB SVR Supply voltage | Rg<50Q2 V.=15t02z20V 86 | 96 dB rejection Rg<10kQ V.=5tor15V]77 | 96 77, (| 96 dB 0260 E-03 222 SG S-THOMSON OVE D gg 2929237 OOLLb31 1 Ml -7-79-05-/0 Faw etmeS G S-THOMSON O7E Dm 7929237 OOLLS2 0 Ml 7-7PAO5-/0 = - 1H A PAR UIA 7929225 $ G S SEMI. ELECTRICAL CHARACTERISTICS (continued) LS 141 LS 141A ~ LS 141C Parameter Test conditions Unit Min.| Typ. | Max. | Min.] Typ.| Max. | Min.| Typ.| Max. Transient respon.t Tamb= 25C {unity gain) Rise time 0.3 0.25} 0:8 0.3 us Overshoot 5 6 20 5 % B Bandwidth Tamb= 25C 0.437, 1.5 MHz SR Slew rate Tamp= 25C 0.5 0.3 | 0.7 0.5 Vius Ig Supply current | Tamp= 25C 17 2.8 1.7 2.8} mA Prot Power Tamb= 25C consumption V,= 20V 80; 150 mW Ve= +15V 50 85 50 851] mW V,= +20V Tamb= Tmin 165 mW amb | max 135 mW V.= t15V Tamb= Tmin 60 100 mW amb= Tmax 45| 75 mw Note: These specifications, unless otherwise specified, apply for V<= +15V and Tamp= -65 to 125C for LS 141 and LS 141A, For the LS 141C these specifications apply for Tamp= 0 to 70C Fig. 1- Open loop voltage Fig. 2 - Output voltage Fig. 3- Power consumption gain vs. supply volt- swing vs. supply vs. supply voltage age voltage Q 8. R 16 20 ty() o s 0 WS tyt) s % ts WW) 0261 E-04 223a EEEOEeeEeeooe ee if Oe - 7929237 OO11b33 2 e777 CF lo 2 2 nation pete af eye SA eet a Fig. 4 - Open loop voltage Fig. 5 - Open loop phase Fig.6 - Input offset current gain vs. frequency response vs. fre- vs. supply voltage quency {for tS oy and los i : (na) 1 0 10 vw aw 10 10% (Hz) 0 2 4 6 a 10 12 1 16 ft gt} Fig. 7 - Input resistance and Fig. 8- Output resistance Fig. 9 - Output voltage capacitance vs. fre- vs. frequency swing vs. load re- quency (for LS 141 sistance and LS 141C) ... Q.2201 Ry (nm) we Ld wt 108 F (tz) 10 : Ryn) Fig. 10 - Output voltage Fig. 11 - Input noise voltage Fig. 12 ~ Input noise current swing vs. frequency vs. frequency vs. frequency 0 ud 0 oS f {Hz) Ud we we Oe f (tz) 0262 E-05 224a _ Fig. 13 - Transient response Q as 1 it} 2 tn. 5 Fig. 14 - Common mode re- jection ratio vs. fre- quency 888 38 85 os 2 10 o 1 0 Ww ww Wr toh WO tO A tH2) Typical performance curves for LS 141 and LS 141A Fig. 16 - Input bias current vs. ambient tem- perature 6-791 tp (na) 160 Tam (0) Fig. 19 - Output short-cir- cuit current vs. am- bient temperatu 10 Tamb OC} a (4a) Prot or) Fig. 17 - Input resistance vs. ambient tempera- ture 100 Tam (*C) Fig. 20 - Power consumption vs. ambient tem- perature Fig. 15- Voltage follower large signal pulse response Yo wh Vy a tt5 Tamp=i5C Fig. 18 - tnput offset current vs. ambient tem- perature Tos, {nA} et -69 -0 0 20 60 100 Tamb("S) Fig. 21- Frequency charac- teristics vs. ambient temperature 100 Tamp(C} 0265 E~ 06 mart osoly saaecotata ny JRL Yg enka aNSG S-THOMSON O76 D gw 7929237 OOLLLES b ml 77P-OTLO 7929225 S$ G SEMICONDUCTOR CORP Typical performance curves for LS 141C Fig, 22- Input bias current Fig. 23- Input resistance vs. Fig. 24 - Input offset current vs. ambient tem- ambient tem: vs. ambient tem- perature perature perature aA wan 2 e o a wo 6 60 Famp tC) Qo 2 20 60 $0 Tamp CC) o 20 0 60 80 Tamp("C} Fig. 25 - Output short circuit Fig. 26 - Power consumption Fig. 27 - Frequency charac- current vs. ambient vs. ambient tem- . teristics vs.ambient temperature perature temperature Tg tema) VALUE, 26 2 20 @ 80 fama (UC) n 0 6. 0 Tams (C) 9 a 0 Cd 80 Temp CC) TYPICAL APPLICATIONS Fig. 28 - Clipping amplifier Fig. 29 - Simple integrator Fig. 30 - Simple. differentiator ct bt -#4 | tt Sey is ui at | Mi REUT At 2 meur at 2 napster EET faa le 2 L = ssn P 5+ 250T oe a tele wea Yo toate Sust where Wz sZener breatdown vollage 2 D264 E-07 226 OE ReSG S-THOMSON O7E Dmg 74259237 OOLIb3b 8 mT FE WAS LINEAR INTEGRATED CIRCUITS N 7929225 S$ G S SEMICONDUCTOR CORP OPERATIONAL AMPLIFIERS @ SHORT.CIRCUIT PROTECTION @ OFFSET VOLTAGE NULL CAPABILITY LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGE @ NO LATCH-UP @ SLEW-RATE = 5.5V/us (Gy = 10, Co = 3.5 pF) The LS 148 series consists of general purpose operational amplifiers, intended for a wide range of analog applications where tailoring of frequency characteristics is desirable. High common mode voltage range and absence.of Latch-up tendencies. make the LS 148 series ideal for use as a voltage follower. The high gain and wide range of operating. voltage provide superior performance in integrators, summing ampli- fiers and general feedback applications. Unity gain frequency compensation is achieved by means of a single 30 pF capacitor. The LS 148 series is available with hermetic gold chip (8000.series). This is par- ticularly. suitable for professional and telecom applications, wherever very high MTBF are required. ABSOLUTE MAXIMUM RATINGS TO-99 | Minidip | Lpackage V; Supply voltage + 22V V, (1) Input voltage +15V AV; Differential input voltage +30V Top Operating temperature for LS 148/LS 148A -55 to 125C for LS 148C Oto 70C Output short circuit duration (2) indefinite Prot Power dissipation at Tamp= 70C 520 mW 665 mW 400 mW Tstg Storage temperature -65 to 150C | -55 to 150 C | -55 to 150 C 1) For supply voltage less than + 15V, input voltage is equal to the supply voltage 2) The short circuit duration is limited by thermal dissipation. MECHANICAL DATA Dimensions in mm Gan 49-57 5 i a3 o - are age? $ al 8 i at al 2 ia g gy ule =| g jae en a oy 2 . sl roo Minidip . . $0-3 -08 227 79-05-10 MC eatm etl mre cee