Numerical Index 1N4348 -1N4405 RECTIFIERS ZENER DIODES =z = Ss V V | J ., |z(nom) *) Tot = = R FE R surge = pace | == | Wolts) | (olts) (ma) | (Amps) | z(min) Tay] v.% | Po TYPE | | REPLACEMENT & NUMBER | & = z= s 1N4348 S | 1N4761 2-29 zD 1. 1N4348A | S | 1N4761 2-29 ZD 1. 1N4348B Ss 1N4761A 2-29 ZD 75% 5.0 1.0W 1N4349 S | 1N4762 2-29 ZzD 82* 20 | 1.0W 1N4349A 8 1N4762 2-29 ZD 82* 10 1.0W 1N4349B 1N4762A 2~29 ZD 82% 5.0 1.0W 1N4350 $ 1N4763 2-29 ZD 91* 20 1.0W 1N4350A S 1N4763 2-29 ZD 91* 10 1.0W 1N4350B ; S_ } 1N4763A 2-29 2D 91* 5.0 | 1.0W 1N4351 S | 1N4764 2-29 ZD 100* 20 | 1.0W 1N4351A | S | 1N4764 2-29 ZD 100* 10 | 1.0W 1N4351B | S| 1N4764A 2-29 Z2D 100* 5.0 | 1.0W 1N4352 s | 1M110zS10 2-29 zD 110* 20 | 1.0W 1N4352A 8 1M110ZS10 2-29 110* 10 1.0W 1N4352B | S_ | 1M110ZS5 2-29 110* 5.0 | 1.0W 1N4353 S | 1M120zS10 2-29 120* 20 | 1.0W 1N4353A | S | 1M120ZS10 2-29 120* 10 | 1.0W 1N4343B | S | 1M120zS5 2-29 120* 5.0 | 1.0W 1N4354 8 1M130Z810 2-29 130* 20 1.0W 1N4354A | S| 1M1L30zS10 2-29 130* 10 } 1.0W 1N4354B | S | 1M130z85 2-29 130% 5.0 | 1.0W 1N4355 S | 1M150zS10 2-29 150* 20 | 1.0W 1N4355A | S| 1M150zS10 2-29 150* 10 } 1.0W 1N4355B s 1M150ZS5 2-29 150* 5.0 1.0W 1N4356 Ss 1M1602S10 2-29 160* 20 | 1.0W 1N4356A s 1M160ZS10 2-29 160* 10 T.OW 1N4356B S 1M1602S5 2-29 160* 5.0 1.0W 1N4357 s 1M1802510 2-29 180* 20 | 1.0W 1N4357A | S 1M180ZS10 2-29 180* 10 | 1.0W 1N4357B | S 1M180ZS5 2-29 180* 5.0 | 1.0W 1N4358 S| 1M200zZS10 2-29 200% 20 1.0W 1N4358A | S| 1M200zS10 2-29 200% 10 | 1.0W 1N4358B | S | 1M200ZS5 2-29 200* 5.0 | 1.0W 1N4359 8 1N4360 Ss 1N4370A 2-11 2.52 5.0 10.25W 1N4361 S | 1N4007 3-24 1N4362 Ss 1N4363 8 1N4364 s 1N4002 3-24 1N4365 S | 1N4003 3-24 1N4366 S | 1N4004 3-24 1N4367 S | 1N4004 3-24 1N4368 S 1N4005 3-24 1N4369 s 1N4005 3-24 1N4370 s 2-11 2.4% 10 0.4W 1N4370A S 2-11 2.4% 5.0 0.4W 1N4371 s 2-11 2.7% 10 0.4W 1N4371A S 2-11 2.7% 5.0 0.4W 1N4372 s 2-11 3.0* 10 | 0.4W 1N4372A | S 2-121 3.0% 5.0 | 0.4W 1N4373 s 1N4374 s 1N4375 Ss 1N4376 S 1N4377 s R 25K 30 0.75 O.1 50 1N4378 S Photosensitive Device; I(dark) = 10 nA, Sensitivity = 9.0 mA @ VcE = 5.0 V, H = 9.0 mW/om2 1N4379 s Microwave S-band Detector ; 1N4380 8 cs 1N4381 G HS 1N4382 cs 1N4383 Ss 1N4003 3-24 R 1.3 1N4384 8 1N4004 3-24 R 1.3 1N4385 Ss 1N4005 3-24 R 1.3 1N4386 Varactor Diodes, See table on page 1-86 thru | | | ! 1N4387 Varactor Diode, See table on page 1-86 1N4388 1N4389 s 1N4390 s 1N4391 s 1N4392 s 1N4393, A,B I I thru Tunnel Diodes, See table on page 1-92 1N4399 , A,B 1N4400 s 1N4736 2-29 ZD 6.8% 20 1.0W 1N4401 s 1N4737 2-29 ZD 7.5% 20 { 1.0W 1N4402 8 1N4738 2-29 ZD 8.2* 20 1.0W 1N4403 Ss 1N4739 2-29 ZD 9.1% 20 1.0W 1N4404 Ss 1N4740 2-29 ZD 10* 20 1.0W 1N4405 s 1N4741 2-29 ZD 11* 20 1,0W RRectifier, RD-Reference Diode, ZO~Zener Diode, GPGeneral Purpose, HCHigh Conductance (== 20mA@=1V), HSHigh Speed Switch (Max t,. < 0.38), CSHigh Conductance, High Speed Switch, MSMedium Speed Switch, PAParametric Amplifier, SPSpecial Purpose. 1-69Numerical Index VARACTOR DIODES INDEX IN950-1N4793D CAPACITANCE MULTIPLIER PERFORMANCE r T Voltage Po , TYPE PAGE cI cimay)! Range | BVrp| O @ f Max @ Min Min NUMBER * few Rs P. t P f Cr 1 Tol C (min) T 25C in in out out \ iM te PFs % 1 Volts | Voits | Volts GHz | Ohms | Watts | Watts! GHz | Watts | GHz | % 1N950 35 2.51 14.0 J130 130 | 7.0 ]0.05 1N951 50 2.4/4.0 | 80 | 80] 7.0 ]0.05 | 4.5 1N952 70 2.43 }4:0 | 60 | 60 | 7.0 Jo.05 | 2.1 1N953 100 2.414.0 | 25 | 25] 7.0 Jo.05 | 1.5 1N954 35 2.51 14.0 | 25 | 25 | 7.0 }0.05 LN955 50 2.4 [4.0 | 25 | 25 | 7.0 10.05 | 5.0 1N956 70 2.43 }4.0 |} 25 | 25 | 7.0 $0.05 | 201 1N2627 2.75 1.75 | 90 {5.0 |5.0] io] 1.0 1N2628 2.5 1.5 | 015.0 ]5.0] 14] 1.0 1N3182 33 20 | 65 10.05 | 3.0 | 0.163 1N3488 56 15 | 7.0 }0.05 1N3551 50 | 6.0 1.38 14.0 ]8.0 | 11 | 30 [0.05 1N3552 21.5 | 6.0 22 | 25 10.05 1N3554 12 100 1N3555 20 100 | 60 |0.05 1N3556 47 100 | 50 |0.10 1N3557 24 210 | 75 |0.05 1N3627 21.3 2.45 [4.0 | 20} 20] 25 }0.05 1N3628 50 2.5/4.0 | 20 | 20 | 30 |0.05 1N3770 2.0 5.5 1N3945 20 1.5 14.0 | 20 | 20 | 7.0 J0.05 0.50 1N3946 71 9.0 | 7.0 |0.05 0.50 1N3947 70 9:0 | 9/0 |0.05 1N4091 4.2 2.5 6.0 0.30 1N4386 | 12-5 50 250 | 75 |0.05 | 1.5 25} 50 10.05} 32.5] 0.15] 65 1N4387 | 12-7 35 150 | 150 [0.05 | 1.5 201 30 [0.15! 15| 0.45! 50 1N4388 | 12-8 20 100 | 200 }o.05 | 2:0 ro] 20 | 0.5{ 11] 1.0] 55 1NG598 22 4.04 14.0 | 90 | 90 | 50 ]0.05 0.25 1N4599 47 5.0 ]2.0 }100 {110 | 100 Jo.05 | 100 | 0.50 1N4609 22 2.64 14.0 | 35 | 35 | 60 |0.05 0.25 1N4786 6.8 | 20]2.56] o |4.0] 25] 15 |o.05 0.50 1N4786A 6.8 | 1012.56 | o|4.0 | 25 | 15 [0.05 0.50 1N4786B 6.8 | 5.0/2.56] o f4.0 | 25] 15 ]o.05 0.50 1NG786C 6.8 | 2.012.56] o]4.0} 25] 15 }o.05 0.50 1N4786D 6.8 | 1.0|2.56] o]4:0}] 25] 15 |0.05 0.50 1N4787 g.2| 20]2.56] 014.0] 25] 15 }0.05 0.50 IN4787A 3.2 | 10|2.56| 0 }4.0] 25] 15 |0.05 0.50 1N4787B 8.2 | 5.0]2.:56| o}4:0] 25] 15 }0.05 0.50 1N4787C g.2 | 2.0 (2.56 | 0 |4.0 | 25 | 15 [0.05 0.50 1N4787D 3.2] 1.0 }2.56] 074.0] 25] 15 }0.05 0.50 1N4788 10} 20]2.50] o |4.o | 25] 15 |0.05 0.50 1N4788A io | 1012.50] o |4:0 | 25} 15 |0.05 0.50 1N4788B 10 | 5.0]2.50] 6 |4:0 | 25] 15 {0.05 0.50 1N4788C io | 2.0}2.50] 0 |4:0 | 25] 15 [0.05 0.50 1N4788D 10 | 1.0/2.50] 0 |4:0 | 25] 15 [0.05 0.50 1N4789 12] 20]2.49}] O}4.0] 25] 15 ]0.05 0.50 1N4789A 12] 10/2.49 | 0 |4:0 | 251} 15 10.05 0.50 1N4789B 12 | 5.0{2.49] 0 44.0] 25] 15 |0.05 0.50 1N4789C 12 | 2.0]2.49] o|4.0] 25] 15 Jo.05 0.50 1N4789D 12} 1:0]2:49 | o|f4:o] 25 | 15 [0.05 0:50 1N4790 is | 2012.49] of4.0] 25] 15 |0.05 0.50 1N4790A 15) 10}2.49} 044.0} 25) 15 )0.05 0.50 1N4790B 15 | 5.0/2.49] o]4.0] 25] 15 10.05 0:50 1N4790C 15 | 210 ]2149 | o |4io | 25] 15 | 0.05 0150 1N4790D 15] 1:0]2.49] o |4io}] 25} 15 | 0.05 0:50 1N4791 18} 20|2.48] o|}4.0] 20} 15 ]0.05 0.50 1N4791A ig} 10/2.48| 0 |]4:0] 20] 15 |0.05 0:50 1N4791B 1g} 5.0|2.48] o|4.0] 20] 15 ]0.05 0.50 IN4791C 1g} 2:0}2.48} 0 |4:0] 20} 15 )0.05 0.50 1N4791D 18] 1.0]2.48| o}4:0] 20] 15 |0.05 0.50 1N4792 22| 2012.46] 0]4.0{ 20] 15 }0.05 0.50 1N4792A 22 | 10/2.46| oO|]4.0] 20] 15 }0.05 0.50 1N4792B 22 | 5.0]2.46| o}4:0] 20/ 15 |0.05 0.50 1N4792C 92 | 2:0|2146] o|4:0] 20] 15 }0.05 0.50 1N4792D 22 | 1.0}2.46 | o|4.0 | 20} 15 |0.05 0.50 1N4793 27| 20|2.46] o|4:0] 20] 15 }0.05 0:50 1N4793A 27} 1012.46] o|}4.0} 20] 15 |0.05 0.50 1N4793B 27 | 5.0]2.46] 014.0] 20] 15 10.05 0.50 1N4793C 27} 2.0/2.46] 0 f4.0] 20] 15 10.05 0:50 1N4793D 27 | 1:0)2.46] o|4:0] 20] 15 }0.05 0.50 1-871N4386 (MV1802) CASE 49 cathode connected to stud MAXIMUM RATINGS Voltage Variable Capacitance Diodes Vp = 250V Pou, = 37.5 W Typ @ 150 MHz 4 = 75% Typ (f.44 = 150 MHz Silicon varactor diode for high-power frequency mul- tiplication applications. Rating Symbol Value Unit Reverse Voltage VR 250 Vde RF Power Input Pin 100 Watts Total Device Dissipation @ Tg = 75C Pp 25 Watts (derate 0.25 W/C above 75C) Junction Temperature Ty +175 oC Storage Temperature T stg -65 to +175 %% ELECTRICAL CHARACTERISTICS (Te = 25C) Characteristic Symbol Condition Min Typ Max Unit Reverse Breakdown Voltage BVp | Ip = 10uAde 250 300 _ Vde Series Resistance R Vr = 6 Vde Ss R f = 50 MHz 0.75 1.5 Ohms Junction Capacitance Cy VR = 6 Vde f = 50 MHz 35 | 50 pF Figure of Merit Q VR = 6 Vde f= 50 MHz 75 125 ~ Power Output Pout TRIPLER TEST CIRCUIT 32.5 37.5 _ Watts Efficiency n Pi, = 50W fin = 50 MHz 65 75 % fout = 150 MHz1N4386 (continued) POWER OUTPUT versus OUTPUT FREQUENCY FOR HARMONIC TRIPLING Voltage Variable Capacitance Diodes SERIES RESISTANCE AND FIGURE OF MERIT versus REVERSE VOLTAGE Ry, SERIES RESISTANCE (OHNS) 9 180 6200 20 60 80 100 120 140 160 Va, REVERSE VOLTAGE (VOLTS) 40 50 MHz TO 150 MHz TRIPLER TEST CIRCUIT Py = 50 = Pin = 40 WATTS a Ee = & 5 Piy = 30 s & be Ss 3 & = 20 = = 3 2 om x Ss a Py = 10 WATTS 100 200 400 600 800 four OUTPUT FREQUENCY (MHz) OUTPUT {= 150 MHz ti & Pout = 32.5W min. INPUT porn fe f <= 50 MHz aS Ce Pin =: SOW A Gs lL 270 K ft 4 ivi ts Mo Cs ky 4H APPLICATION NOTES VARACTOR CHARACTERISTICS : The 1N4386 is designed for RF power inputs up to 100 watts and for output frequencies up to 300 MHz.Although power handling capability is stressed in device construction, high-multiplication efficiency is maintained with input pow- ers as low as 10 watts. Where frequencies with input powers below 10 watts are to be multiplied, or where higher output frequencies are desired, the 1N4387 varactor diode is recommended. That device is designed for maximum power levels up to 40 watts and output frequencies up to 600 MHz (see the 1N4387 data sheet for device specifications. ) Both the 1N4386 and 1N4387 power varactors are fab- ricated by the formation of a deep diffused silicon junction with a unique impurity profile. One of the significant char- acteristics of such a proftle is enhancement of nonlinearities due to the sharp recovery of stored minority carriers injected during the forward voltage swing. This increased nonlinear- ity results in better efficiency retention at high power levels and considerably less distortion of amplitude modulated signals. Published design theory for abrupt junction varactors can be used for approximate calculations of diffused varactor impedance and power handling capability, but the engineer is cautioned to use the results of such calculations for per- formance estimates only. Functional specifications and circuit-determined curves are included with data sheet infor- mation in order to facilitate circuit design. The DO-4 package is well suited to varactor shunt circuits as the stud can be mounted to a chassis for ground and heat sink purposes. 12-6 DIAMETER Coxt.| LENGTH {inside) TURNS WIRE DIA. L, 1% 11/16 7 3/32 L, 1% 11/16 4% 3/32 4, 1% A 3% 3/32 C, | 2.8-11 pr] .f. JOHNSON 167-1 | VARIABLE CAPACITOR C, | 6.7-140 pF] HAMMARLUND APC-140 | VARIABLE CAPACITOR C, | 3.0-25 pF | HAMMARLUND APC-25 | VARIABLE CAPAC!TOR C, | 2.9-35 pF | HAMMARLUND MAPC-35] VARIABLE CAPACITOR Cs | 3.0-25 pF] HAMMARLUND APC-25 | VARIABLE CAPACITOR GENERAL DESIGN CONSIDERATIONS : In the design of varactor harmonic multipliers, !umped circuit techniques are useful up to 450 MHzwith little per- formance degradation provided coil and capacitor Q values of 200 to 300 are maintained. Above 450MHz,coaxial, stripline, or helical coil resonators aresrecommended. Component values are not particularly critical; however, excessive inductance or insufficient cou- pling can cause low efficiency, and insufficient inductance or excessive coupling can cause poor filtering. Simple experi- mentation with well constructed and shielded breadboards is generally sufficient for circuit optimization. Note that an adequate tuning range must be provided to insure input match over normal varactor-variations, and that spurious signals between stages should be kept below 30 dB by suit- able filter circuits. If self bias is used, bias resistor values between 68K and 270K ohms are optimum. The higher values give more effi- cient operation, whereas the lower values permit more linear operation. Amplitude modulated signals can be passed with relatively low distortion if Rg ~~ 100K ohms and the varac- tor RF input power level is kept less than 65% of the rated maximum limit. For all multiplications other than doubling, idler circuits should be provided in order to optimize circuit efficiencies. In typical applications doubling efficiency is 5% greater than that for tripling and quadrupling efficiency 5% less than that for tripling. (See data sheet curves.)