PD - 97403 IRG7PH30K10DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features * * * * * * * * * Low VCE (ON) Trench IGBT Technology Low switching losses 10 S short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package C VCES = 1200V IC = 16A, TC = 100C tSC 10s, TJ(max) = 150C G VCE(on) typ. = 2.05V E n-channel C Benefits * High Efficiency in a wide range of applications * Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses * Rugged transient Performance for increased reliability * Excellent Current sharing in parallel operation E C G TO-247AC G Gate C Collector E Emitter Absolute Maximum Ratings Parameter Max. Units V VCES Collector-to-Emitter Voltage 1200 IC @ TC = 25C Continuous Collector Current 30 IC @ TC = 100C Continuous Collector Current 16 INOMINAL Nominal Current 9.0 ICM Pulse Collector Current, Vge = 15V ILM Clamped Inductive Load Current, Vge = 20V 27 c A 36 IF @ TC = 25C Diode Continous Forward Current IF @ TC = 100C Diode Continous Forward Current 30 IFM Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage 30 V PD @ TC = 25C Maximum Power Dissipation 180 W PD @ TC = 100C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range 16 d 36 71 -55 to +150 C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf*in (1.1 N*m) Thermal Resistance Parameter Min. Typ. Max. --- --- 0.70 RJC (Diode) f Thermal Resistance Junction-to-Case-(each Diode) f --- --- 1.44 RCS Thermal Resistance, Case-to-Sink (flat, greased surface) --- 0.24 --- RJA Thermal Resistance, Junction-to-Ambient (typical socket mount) --- 40 --- RJC (IGBT) 1 Thermal Resistance Junction-to-Case-(each IGBT) Units C/W www.irf.com 08/14/09 IRG7PH30K10DPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage Min. Typ. 1200 -- -- Max. Units -- 1.11 -- -- 2.05 2.35 -- 2.56 -- VGE(th) Gate Threshold Voltage 5.0 -- 7.5 VGE(th)/TJ Threshold Voltage temp. coefficient -- -15 -- gfe ICES Forward Transconductance -- 6.2 -- Collector-to-Emitter Leakage Current -- 1.0 25 -- 400 -- -- 2.0 3.0 -- 2.1 -- -- -- 100 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 250A Ref.Fig e CT6 V/C VGE = 0V, IC = 1mA (25C-150C) IC = 9.0A, VGE = 15V, TJ = 25C V CT6 5,6,7 IC = 9.0A, VGE = 15V, TJ = 150C 9,10,11 V VCE = VGE, IC = 400A mV/C VCE = VGE, IC = 400A (25C - 150C) S VCE = 50V, IC = 9.0A, PW = 80s A 9,10 11,12 VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150C V IF = 9.0A 8 IF = 9.0A, TJ = 150C nA VGE = 30V Switching Characteristics @ TJ = 25C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter -- 45 Max. Units 68 Qge Gate-to-Emitter Charge (turn-on) -- 8.7 13 Conditions Ref.Fig IC = 9.0A nC Qgc Gate-to-Collector Charge (turn-on) -- 20 30 VCC = 600V Eon Turn-On Switching Loss -- 530 760 IC = 9.0A, VCC = 600V, VGE = 15V Eoff Turn-Off Switching Loss -- 380 600 Etotal Total Switching Loss -- 910 1360 td(on) Turn-On delay time -- 14 31 tr Rise time -- 24 41 J 24 VGE = 15V CT1 CT4 RG = 22, L = 1.0mH, LS = 150nH, TJ = 25C Energy losses include tail & diode reverse recovery IC = 9.0A, VCC = 600V, VGE = 15V ns CT4 RG = 22, L = 1.0mH, LS = 150nH, TJ = 25C td(off) Turn-Off delay time -- 110 130 tf Fall time -- 38 56 Eon Turn-On Switching Loss -- 810 -- Eoff Turn-Off Switching Loss -- 680 -- Etotal Total Switching Loss -- 1490 -- Energy losses include tail & diode reverse recovery td(on) Turn-On delay time -- 11 -- IC = 9.0A, VCC = 600V, VGE = 15V RG = 22, L = 1.0mH, LS = 150nH CT4 TJ = 150C WF1 IC = 9.0A, VCC = 600V, VGE=15V J RG=22, L=1.0mH, LS=150nH, TJ = 150C tr Rise time -- 23 -- td(off) Turn-Off delay time -- 130 -- tf Fall time -- 260 -- Cies Input Capacitance -- 1070 -- Coes Output Capacitance -- 63 -- VCC = 30V Cres Reverse Transfer Capacitance -- 26 -- f = 1.0Mhz TJ = 150C, IC = 36A RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area ns e 13,15 CT4 WF1, WF2 14,16 WF2 pF VGE = 0V 23 4 VCC = 960V, Vp =1200V CT2 Rg = 22, VGE = +20V to 0V 10 -- -- s TJ = 150C, VCC = 600V, Vp =1200V 22, CT3 Rg = 22, VGE = +15V to 0V WF4 Erec trr Reverse Recovery Energy of the Diode -- 710 -- J TJ = 150C Diode Reverse Recovery Time -- 140 -- ns VCC = 600V, IF = 9.0A Irr Peak Reverse Recovery Current -- 12 -- A VGE = 15V, Rg = 20, L =1.0mH, Ls = 150nH 17,18,19 20,21 WF3 Notes: VCC = 80% (VCES), VGE = 20V, L = 36H, RG = 33. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. R is measured at TJ of approximately 90C. 2 www.irf.com IRG7PH30K10DPbF 30 200 25 150 Ptot (W) IC (A) 20 15 100 10 50 5 0 25 50 75 100 125 0 150 0 20 40 60 T C (C) 80 100 120 140 160 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10sec 100sec 10 IC (A) IC (A) 1msec 10 DC 1 Tc = 25C Tj = 150C Single Pulse 0.1 1 1 10 100 1000 10000 10 100 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150C; VGE = 20V 50 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 30 ICE (A) ICE (A) 10000 VCE (V) Fig. 3 - Forward SOA TC = 25C, TJ 150C; VGE =15V 20 30 20 10 10 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s www.irf.com 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s 3 IRG7PH30K10DPbF 50 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 30 40 -40C 25C 150C 30 IF (A) ICE (A) 40 20 20 10 10 0 0 0 2 4 6 8 10 0.0 1.0 2.0 VCE (V) 12 10 10 8 8 ICE = 4.5A ICE = 9.0A VCE (V) VCE (V) 12 ICE = 18A ICE = 4.5A ICE = 9.0A ICE = 18A 6 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25C Fig. 9 - Typical VCE vs. VGE TJ = -40C 40 ICE, Collector-to-Emitter Current (A) 12 10 8 VCE (V) 5.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80s 4 ICE = 4.5A ICE = 9.0A 6 ICE = 18A 4 2 30 20 T J = 25C T J = 150C 10 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150C 4 4.0 VF (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s 6 3.0 20 4 6 8 10 12 14 16 VGE, Gate-to-Emitter Voltage (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V www.irf.com IRG7PH30K10DPbF 1000 2000 tF 1600 Swiching Time (ns) Energy (J) EON 1200 800 EOFF tdOFF 100 tR 10 tdON 400 1 0 5 10 15 0 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L = 1.0mH; VCE = 600V, RG = 22; VGE = 15V 5 10 15 20 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L = 1.0mH; VCE = 600V, RG = 22; VGE = 15V 1600 1000 tF 1400 Swiching Time (ns) EON Energy (J) 1200 1000 800 100 td OFF tR 10 tdON EOFF 600 400 1 0 20 40 60 80 100 0 20 RG () 60 80 100 RG () Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V 18 18 RG = 5.0 16 16 14 RG = 10 IRR (A) IRR (A) 40 12 RG = 20 14 12 10 RG = 47 8 10 6 8 4 6 8 10 12 14 16 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 150C www.irf.com 18 20 0 10 20 30 40 50 RG () Fig. 18 - Typ. Diode IRR vs. RG TJ = 150C 5 IRG7PH30K10DPbF 18 3000 2500 14 QRR (nC) IRR (A) 16 12 18A 20 47 2000 9.0A 1500 10 4.5A 1000 8 0 100 200 300 0 400 100 diF /dt (A/s) 400 60 48 RG = 5.0 RG = 10 RG = 20 40 RG = 47 32 600 400 5 10 15 40 Isc 24 30 16 20 8 10 20 8 10 IF (A) 12 14 Current (A) 800 0 50 Tsc Time (s) 1000 Energy (J) 300 Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150C 1200 16 VGE (V) Fig. 22 - VGE vs. Short Circuit Time VCC = 600V; TC = 150C Fig. 21 - Typ. Diode ERR vs. IF TJ = 150C 16 VGE, Gate-to-Emitter Voltage (V) 10000 Cies 1000 Capacitance (pF) 200 diF /dt (A/s) Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 9.0A; TJ = 150C 100 Coes 10 Cres VCES = 600V VCES = 400V 14 12 10 8 6 4 2 0 1 0 100 200 300 400 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 5.0 10 500 0 10 20 30 40 50 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 9.0A; L = 600H www.irf.com IRG7PH30K10DPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 J 0.02 0.01 0.01 R1 R1 J 1 R2 R2 R3 R3 C 2 1 3 2 4 3 4 Ci= i/Ri Ci i/Ri 1E-005 0.0107 0.000005 0.1816 0.000099 0.3180 0.001305 0.1910 0.009113 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 i (sec) Ri (C/W) R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.1 0.10 0.05 J 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 R1 R1 J 1 R2 R2 R3 R3 Ri (C/W) R4 R4 C 1 2 2 3 3 Ci= i/Ri Ci i/Ri 4 4 i (sec) 0.0103 0.000005 0.4761 0.000451 0.5749 0.001910 0.3390 0.012847 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRG7PH30K10DPbF L L DUT 0 VCC 80 V + - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC -5V VCC DUT / DRIVER DUT VCC Rg SCSOA Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 DUT Rg 22K C sense VCC G force DUT 0.0075F E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - BVCES Filter Circuit www.irf.com IRG7PH30K10DPbF 45 16 800 40 700 14 700 600 12 600 10 500 VCE (V) 500 90% ICE 400 8 300 6 5% ICE 5% V CE 200 0 Eoff Loss -100 -5 0 5 30 25 90% test current 400 300 10 current 2 100 0 0 -2 -100 -1.8 10 5% V CE 100 0 QRR tRR 10 700 7.5 600 5 -5 -0.8 0 -500 -2.5 Peak IRR -5 10% Peak IRR -900 -2.50 0.00 2.50 -7.5 -10 -12.5 5.00 time (S) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4 www.irf.com Vce (V) -400 -800 0.2 1.2 2.2 3.2 80 VCE 70 60 ICE 500 IF (A) VF (V) 800 2.5 -700 0 Eon Loss Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4 12.5 -300 -600 5 time (s) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4 -200 20 15 time(s) -100 TEST CURRENT 200 10% test 4 100 35 tr I CE (A) tf 50 400 40 300 30 200 20 100 10 Ice (A) 800 VCE (V) 900 ICE (A) 18 900 0 0 -10 -100 -5 0 5 10 Time (uS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 150C using Fig. CT.3 9 IRG7PH30K10DPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/2009 10 www.irf.com