Intel® Pentium® M P rocesso r
Datasheet
April 2004
Order Number: 252612-003
2Intel® Pentium® M Processor Datasheet
Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement of any
patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products. Information
contained herein supersedes previously published specifications on these devices from Intel.
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
THE INTEL® PENTIUM® M PROCESSOR MAY CONTAIN DESIGN DEFECTS OR ERRORS KN OWN AS ERRATA WHICH MAY CAUSE THE PRODUCT TO DEVIATE FROM
PU BLIS HED SPECIFICATIONS. CURRENT CHARACTERIZED ERRATA ARE AVAILABLE ON REQUEST.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725 or by visiting Intel’s Website at http://www.intel.com
Copyright © Intel Corporation 2000, 2001, 2002, 2003, 2004.
Intel, Intel logo, Pentium, and Intel SpeedStep, and Intel Centrino are registered trademarks or trademarks of Intel Corporation and its subsidiaries in
the United States and other countries.
* Other brands and names are the property of their respective owners.
Intel® Pentium® M Processor Datasheet 3
Contents
1 Introduction ......................................................................................................................7
1.1 Terminology ...........................................................................................................8
1.2 References.............................................................................................................9
2 L o w Po wer F e atur e s . ..... .... ..... .... ..... .... ..... .... .. ..... .... ..... ..... .... ..... .... ..... .... .. ..... .... ..... .... ..1 1
2.1 Clock Control and Low Power States...................................................................11
2.1.1 Normal State ...........................................................................................11
2.1.2 AutoHALT Powerdown State...................................................................11
2.1.3 HALT/Grant Snoop State ........................................................................12
2.1.4 Sleep State..............................................................................................12
2.1.5 Deep Sleep State ....................................................................................13
2.1.6 Deeper Sleep State.................................................................................13
2.2 Enhanced Intel SpeedStep® Technology............................................................. 13
2.3 Processor System Bus Low Power Enhancements .............................................14
2.4 Processor Power Status Indicator (PSI#) Signal..................................................15
3 E le c tric a l Sp e c ifica tions.. .... ..... .. ..... .... ..... .... ..... .... ..... .... ..... .. ..... .... ..... .... ..... .... ..... .... .. ..1 7
3.1 System Bus and GTLREF....................................................................................17
3.2 Power and Ground Pins.......................................................................................17
3.3 Decoupling Guidelines .........................................................................................17
3.3.1 VCC Decoupling ...................................................................................... 18
3.3.2 System Bus AGTL+ Decoupling..............................................................18
3.3.3 System Bus Clock (BCLK[1:0]) and Processor Clocking ........................18
3.4 Voltage Identification............................................................................................18
3.5 Catastrophic Thermal Protection..........................................................................20
3.6 Signal Terminations and Unused Pins .................................................................20
3.7 System Bus Signal Groups ..................................................................................20
3.8 CMOS Signals .....................................................................................................21
3.9 Maximum Ratings ................................................................................................22
3.10 Processor DC Specifications................................................................................22
4 Packa ge M echanic al Spec if ica tions and Pi n Infor m at ion..... . .... .... . .. .... ... .. .... ......... ...39
4.1 Processor Pin-Out and Pin List ............................................................................47
4.2 Alphabetical Signals Reference ...........................................................................62
5 T h e rm a l S pe c i f ic a tion s a n d Des ign Co nsid e r a tion s ... ..... .... ..... .... ..... .. ..... .... ..... .... ....6 9
5.1 Thermal Specifications.........................................................................................71
5.1.1 Thermal Diode......................................................................................... 71
5.1.2 Intel Thermal Monitor .............................................................................. 72
6 D e bu g To o ls Sp e c ifica tions... .... ..... .... ..... .... ..... .... ..... .. ..... .... ..... .... ..... .... ..... .... .. ..... .... ..7 5
6.1 Logic Analyzer Interface (LAI)..............................................................................75
6.1.1 Mechanical Considerations .....................................................................75
6.1.2 Electrical Considerations......................................................................... 75
4Intel® Pentium® M Processor Datasheet
Figures
1 Clock Control States................................................................................................................... 11
2 Illustration of Active State VCC Static and Ripple Tolerances (Highest Frequency Mode) ........ 28
3 Illustration of Deep Sleep State Voltage Tolerances (Lowest Frequency Mode) ....................... 30
4 Micro-FCPGA Package Top and Bottom Isometric Views ......................................................... 39
5 Micro-FCPGA Package - Top and Side Views ........................................................................... 40
6 Micro-FCPGA Package - Bottom View ....................................................................................... 41
7 Intel Pentium M Processor Die Offset ........................................................................................ 41
8 Micro-FCBGA Package Top and Bottom Isometric Views ......................................................... 43
9 Micro-FCBGA Package Top and Side Views ............................................................................. 44
10 Micro-FCBGA Package Bottom View ......................................................................................... 46
11 The Coordinates of the Processor Pins as Viewed From the Top of the Package..................... 48
Intel® Pentium® M Processor Datasheet 5
Tables
1 References ...................................................................................................................................9
2 Voltage Identification Definition .................................................................................................. 19
3 System Bus Pin Groups..............................................................................................................21
4 Processor DC Absolute Maximum Ratings.................................................................................22
5 Voltage and Current Specifications ............................................................................................23
6 Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.484 V (Active State) ....27
7 Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.484 V (Deep Sleep
State) ..........................................................................................................................................29
8 Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.388 V (Active State) ....31
9 Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.388 V (Deep Sleep
State) ..........................................................................................................................................32
10 Voltage Tolerances for Low Voltage Intel Pentium M Processors (Active State) .......................33
11 Voltage Tolerances for Low Voltage Intel Pentium M Processors (Deep Sleep State) ..............34
12 Voltage Tolerances for Ultra Low Voltage Intel Pentium M Processors (Active State)...............35
13 Voltage Tolerances for Ultra Low Voltage Intel Pentium M Processors (Deep Sleep State)......36
14 System Bus Differential BCLK Specifications.............................................................................37
15 AGTL+ Signal Group DC Specifications .....................................................................................37
16 CMOS Signal Group DC Specifications......................................................................................38
17 Open Drain Signal Group DC Specifications ..............................................................................38
18 Micro-FCPGA Package Dimensions...........................................................................................42
19 Micro-FCBGA Package Dimensions...........................................................................................45
20 Pin Listing by Pin Name..............................................................................................................49
21 Pin Listing by Pin Number ..........................................................................................................55
22 Signal Description .......................................................................................................................62
23 Power Specifications for the Intel Pentium M Processor............................................................70
24 Thermal Diode Interface ............................................................................................................. 71
25 Thermal Diode Specifications .....................................................................................................71
6Intel® Pentium® M Processor Datasheet
Revi sion Hist ory
Document
Number Revision Description Date
252612 001 Initial release of datasheet March 2003
252612 002
Updates include:
Added specifications for Intel Pentium M Processor 1.7 GHz, Low
Voltage Pentium M processor 1.2 GHz, and Ultra Low Voltage
Pentium M processor 1 GHz in Table 5 and Table 23
June 2003
252612 003
Updates include:
Added specifications for Intel Pentium M Processor Low Voltage
1.30 GHz, and Intel Pentium M Processor Ultra Low Voltage 1.10
GHz in Table 5 and Table 23
Updated DINV[3:0]# and BPM[3]# pin direction
March 2004
Intel® Pentium® M Processor Datasheet 7
Introduction
1Introduction
This document provides electrical, mechanical, and thermal specifications for the Intel® Pentium®
M processor.
The Intel Pentium M processor is offered at the following core frequencies:
1.30 GHz
1.40 GHz
1.50 GHz
1.60 GHz
1.70 GHz
The Low Voltage Intel Pentium M processor is offerred at the following core frequencies:
1.10 GHz
1.20 GHz
1.30 GHz
The Ultra Low Voltage Intel Pentium M processor is offered at the following core frequencies:
900 MHz
1.00 GHz
1.10 GHz
Key features of the Intel Pentium M processor incldue:
Supports Intel®Architecture with Dynamic Execution
High performance, low-power core
On-die, primary 32-kB instruction cache and 32-kB write-back data cache
On-die, 1-MB second level cache with Advanced Transfer Cache Architecture
Advanced Branch Prediction and Data Prefetch Logic
Streaming SIMD Extensions 2 (SSE2) enable break-through levels of performance in
multimedia applications including 3D graphics, video decoding/encoding, and speech
recognition.
400-MHz, Source-Synchronous processor system bus to improve performance by transferring
data four times per bus clock (4X data transfer rate, as in AGP 4X).
Advanced Power Management features including Enhanced Intel SpeedStep® technology
Micro-FCPGA and Micro-FCBGA packaging technologies
Manufactured on Intel’s advanced 0.13 micron process technology with copper interconnect.
Support for MMX technology
Internet Streaming SIMD instructions and full compatibility with IA-32 software.
8Intel® Pentium® M Processor Datasheet
Introduction
Micro-op Fusion and Advanced Stack Management that reduce the number of micro-ops
handled by the processor.
Advanced branch pr edict ion arc hite ctur e that significantly reduc es the numbe r of mispredi cted
branches.
Double- precision fl oati ng-point ins truct ions enha nce pe rfor mance for a pplic ations that r equire
gr eater range and pre cision, incl uding sci enti fi c and engineer ing applications a nd advanced 3D
geometry techniques, such as ray tracing.
Note: The term AGTL+ has been used for Assisted Gunning Transceiver Logic technology on other Intel
products.
The Intel Pentium M processor is offered in two packages: a socketable Micro Flip-Chip Pin Grid
Array (Micro-FCPGA) and a surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA)
package technology. The Micro-FCPGA package plugs into a 479-hole, surface-mount, zero
insertion force (ZIF) socket, which is referred to as the mPGA479M socket.
1.1 Terminology
A “#” symbol after a signal name refers to an active low signal, indicating a signal is in the active
state when driven to a low level. For example, when RESET# is low, a reset has been requested.
Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where
the name does not imply an active state but describes part of a binary sequence (such as address or
data), the “#” s ymbol impli es that t he signal is inverted. For example, D[ 3:0] = “H LHL” refe rs to a
hex ‘A , and D [3:0] # = “LHLH” also refers to a hex “A” (H= Hi gh logic level, L = Low logic level) .
“System Bus” refers to the interface between the processor and system core logic (also known as
the chipset components).
Intel® Pentium® M Processor Datasheet 9
Introduction
1.2 References
Material and concepts available in the following documents may be beneficial when reading this
document. Also, please note that “platform design guides,” when used throughout this document,
refers to the following documents: Intel®855PM MHz Chipset Platform Design Guide and Intel®
855GM Chipset Platform Design Guide.
NOTE: Contact your Intel representative for the latest revision and order number of this document.
Table 1. Refer ences
Documen t Order N umbe r
Intel®855PM Chipset P latform Desi gn Gui de http://developer.intel.com
Intel® 855P M Chipset Datas heet http://developer.intel.com
Intel® 855P M Chipset Speci fi cation Update http://developer.intel.com
Intel® 855GM Chipset Platform Desi gn Gui de http://developer.intel.com
Intel® 855GM Chipset Datasheet http://developer.intel.com
Intel® 855GM Chipset Specif ication Updat e http://developer.intel.com
Intel® Penti um® M P rocessor Speci ficat ion Update http://developer.intel.com
Intel A rch it ecture Sof t ware Devel oper 's M anual http://developer.intel.com
Volume I: Basic Ar chitect ure
Volu me II: In s tru c tion Se t Re fe re n c e
Volume II I: S ystem Pr ogramming G uide
I TP70 0 D ebug Por t Des i gn Guide http://developer.intel.com
10 IIntel® Pentium® M Processor Datasheet
Introduction
This page intentionally left blank.
Intel® Pentium® M Processor Datasheet 11
Low Power Features
2Low Power Fe atures
2.1 Clock Control and Low Power States
The Intel Pentium M processor supports the AutoHALT, Stop-Grant, Sleep, Deep Sleep, and
Deeper Sleep states for optimal power management. See Figure 1 for a visual representation of the
processor low-power states.
2.1.1 Nor mal State
This is the normal operating state for the processor.
2.1.2 AutoHALT Po werdown State
AutoHALT is a low-power state entered when the processor executes the HALT instruction. The
processor transitions to the Normal state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI,
INTR), or PSB interrupt message. RESET# will cause the processor to immediately initialize itself.
A System Management Interrupt (SMI) handler will return execution to either Normal state or the
AutoHALT Powerdown state. See the Intel Architecture Software Developer's Manual, Volume III:
System Programmer's Guide for more information.
The system can generate a STPCLK# while the processor is in the AutoHALT Powerdown state.
When the system deasserts the STPCLK# interrupt, the processor will return execution to the
HALT state.
Figure 1. Clock Cont rol St at es
snoop
occurs
Stop
Grant
Normal Sleep
HALT/
Grant
Snoop
Au to Ha lt Deep
Sleep
STPCLK# asserted SLP# asserted
SLP# de-asserted
STPCLK# de-asserted
snoop
serviced
HLT
instruction
snoop
serviced snoop
occurs
DPSLP#
de-asserted
DPSLP#
asserted
STPCLK#
asserted
STPCLK#
de-asserted
halt
break
V0001-04
core voltage raised
core voltage lowered
Halt break - A20M#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt
Deeper
Sleep
12 Intel® Pentium® M Processor Datasheet
Low Power Features
While in AutoHALT Powerdown state, the processor will process bus snoops. Stop-Grant State
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks
after the response phase of the processor-issued Stop-Grant Acknowledge special bus cycle.
Since the AGTL+ signal pins receive power from the system bus, these pins should not be driven
(allowing the level to return to VCCP) f or minimum pow er drawn by the ter mina ti on res ist ors in thi s
state. In addition, all other input pins on the system bus should be driven to the inactive state.
RESET# will cause the processor to immediately initialize itself, but the processor will stay in
Stop-Grant state. A transition back to the Normal state will occur with the deassertion of the
STPCLK# signal. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be
deasserted ten or more bus clocks after the de-assertion of SLP#.
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the
system bus (see Section 2.1.3). A tra nsit ion to t he Sl eep sta te (se e Section 2.1.4) wi ll occur wi th the
assertion of the SLP# signal.
While in the Stop-Grant state, SMI#, INIT# and LINT[1:0] will be latched by the processor, and
only serviced when the processor returns to the Normal state. Only one occurrence of each event
will be recognized upon return to the Normal state.
While in Stop-Grant state, the processor will process snoops on the system bus and it will latch
interrupts delivered on the system bus.
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if
there is any pending interrupt latched within the processor. Pending interrupts that are blocked by
the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to
system logic that it should return the processor to the Normal state
2.1. 3 HALT/Grant Snoop State
The proce ssor will res pond t o snoop or interrupt tra nsacti ons on the system bus w hil e in St op-G rant
state or in AutoHALT Power Down state. During a snoop or interrupt transaction, the processor
enters the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the
system bus has been serviced (whether by the processor or another agent on the system bus) or the
interrupt has been latched. After the snoop is serviced or the interrupt is latched, the processor will
return to the Stop-Grant state or AutoHALT Power Down state, as appropriate.
2.1.4 Sl eep State
The Sleep state is a low power state in which the processor maintains its context, maintains the
phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can only be entered
from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state upon
t he as sert ion of the SLP# signa l. The SLP# pin should onl y be asserted whe n t he pro cessor is in t he
Stop-Grant state. SLP# assertions while the processor is not in the Stop-Grant state are out of
specification and may result in unapproved operation.
Snoop events that occur while in Sleep state or during a transition into or out of Sleep state will
cause unpredictable behavior.
In the Sleep state, the processor is incapable of responding to snoop transactions or latching
interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or
RESET#) are allowed on the system bus while the processor is in Sleep state. Any transition on an
input signal before the processor has returned to Stop-Grant state will result in unpredictable
behavior.
Intel® Pentium® M Processor Datasheet 13
Low Power Features
If RESET# is driven active while the processor is in the Sleep state, and held active as specified in
the RESET# pin specification, then the processor will reset itself, ignoring the transition through
Stop-Grant state. If RESET# is driven active while the processor is in the Sleep state, the SLP# and
STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the
processor correctly executes the Reset sequence.
While in the Sleep state, the processor is capable of entering an even lower power state, the Deep
Sleep state by asserting the DPSLP# pin. (See Section 2.1.5.) While the processor is in the Sleep
state, the SLP# pin must be deasserted if another asynchronous system bus event needs to occur.
2.1.5 Deep Sleep State
Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep
Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped
during the Deep Sleep state for additional platform level power savings. BCLK stop/restart timings
on Intel 855PM and Intel 855GM chipset-based platforms are as follows:
Deep Sleep entry - DPSLP# and CPU_STP# are asserted simultaneously. The platform clock
chip will stop/tristate BCLK within 2 BCLKs +/- a few nanoseconds.
Deep Sleep exit - DPSLP# and CPU_STP# are deasserted simultaneously. The platform clock
chip will drive BCLK to differential DC levels within 2-3 ns and starts toggling BCLK 2-6
BCLK periods later.
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-started after
DPSLP# deassertion as described above. A period of 30 microseconds (to allow for PLL
stabilization) must occur before the processor can be considered to be in the Sleep state. Once in
the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.
While in Deep Sleep state, the processor is incapable of responding to snoop transactions or
latching interrupt signals. No transitions of signals are allowed on the system bus while the
pr ocessor is in De ep Sleep stat e. Any transi tion on an input si gnal bef ore the proc essor has r eturne d
to Stop-Grant state will result in unpredictable behavior.
2.1.6 Deeper Sleep State
The Deeper Sleep state is the lowest power state the processor can enter. This state is functionally
identical to the Deep Sleep state but at a lower core voltage. The control signals to the voltage
regulator to initiate a transition to the Deeper Sleep state are provided on the platform. Please refer
to the platform design guides for details.
2.2 Enhance d I ntel Sp eedStep® Technology
The Intel Pentium M processor features Enhanced Intel SpeedStep® technology. Unlike previous
implementations of Intel SpeedStep technology, this technology enables the processor to switch
between multiple frequency and voltage points instead of two. This will enable superior
performance with optimal power savings. Switching between states is software controlled unlike
previous implementations where the GHI# pin is used to toggle between two states. The following
are the key features of Enhanced Intel SpeedStep technology:
Multiple volt age/freque ncy oper ati ng points provi de opti mal performance at the lowest power.
Voltage/Frequency selection is software controlled by writing to processor MSRs (Model
Specific Registers) thus eliminating chipset dependency.
14 Intel® Pentium® M Processor Datasheet
Low Power Features
If the target frequency is higher than the current frequency, Vcc is ramped up by placing a
new value on the VID pins and the PLL then locks to the new frequency.
If the target frequency is lower than the current frequency, the PLL locks to the new
frequency and the Vcc is changed through the VID pin mechanism.
Software transitions are accepted at any time. If a previous transition is in progress, the
new transition is deferred until its completion.
The processor controls voltage ramp rates internally to ensure glitch free transitions.
Low transition latency and large number of transitions possible per second.
Processor core (including L2 cache) is unavailable for up to 10 µs during the frequency
transition
The bus protocol (BNR# mechanism) is used to block snooping
No bus master arbiter disable required prior to transition and no processor cache flush
necessary.
Improved Intel Thermal Monitor mode.
When the on-die thermal sensor indicates that the die temperature is too high, the
pr ocessor can automatical ly perfor m a t ransi ti on to a lower fre quency/vol tage specified i n
a software programmable MSR.
The processor waits for a fixed time period. If the die temperature is down to acceptable
levels, an up transition to the previous frequency/voltage point occurs.
An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling
better system level thermal management.
2.3 Processor System Bus Low Power Enhancements
The Intel Pentium M processor incorporates the following processor system bus low power
enhancements:
Dynamic FSB power down
BPRI# control for address and control input buffers
Dynamic on-die termination disabling
Low VCCP (I/O termination voltage)
The Intel Pentium M processor incorporates the DPWR# signal that controls the Data Bus input
buf fer s on the processor . The DPWR# si gnal disabl es the buffers whe n not used and ac tiva tes them
only when data bus activity occurs, resulting in significant power savings with no performance
impact. BPRI# control also allows the processor address and control input buffers to be turned off
when the BPRI# signal is inactive. The On Die Termination on the processor PSB buffers is
disabled when the signals are driven low, resulting in additional power savings. The low I/O
termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/
O switching power at all times.
Intel® Pentium® M Processor Datasheet 15
Low Power Features
2.4 Proce ssor Power Stat us Indicator (PSI#) Signal
The Intel Pentium M processor incorporates the PSI# signal that is asserted when the processor is
in a low power (Deep Sleep or Deeper Sleep) state. This signal is asserted upon Deep Sleep entry
and deasserted upon exit. PSI# can be used to improve the light load efficiency of the voltage
regulator, resulting in platform power savings and extended battery life. PSI# can also be used to
simplify voltage regulator designs since it removes the need for integrated 100 µs timers required
to mask the PWRGOOD signal during Deeper Sleep transitions. It also reduces PWRGOOD
monitoring requirements in the Deeper Sleep state.
16 IIntel® Pentium® M Processor Datasheet
Low Power Features
This page intentionally left blank.
Intel® Pentium® M Processor Datasheet 17
Electr ical Specificati ons
3Electri cal S pecificati ons
3. 1 S yst em B us a nd GTL RE F
The Intel Pentium M processor system bus signals use Advanced Gunning Transceiver Logic
(AGTL+) signalling technology, a variant of GTL+ signalling technology with low power
enhancements. This signalling technology provides improved noise margins and reduced ringing
through low-voltage swings and controlled edge rates. The termination voltage level for the Intel
Pentium M processor AGTL+ signals is VCCP = 1.05 V (nominal). Due to speed improvements to
data and address bus, signal integrity and platform design methods have become more critical than
with previous processor families. Design guidelines for the Intel Pentium M processor system bus
are detailed in the platform design guides.
The AGTL+ input s require a r efer ence voltage ( G TL REF) t hat is used by the rec eiver s to deter mine
if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board.
Termination resistors are provided on the processor silicon and are terminated to its I/O voltage
(VCCP). The Intel 855PM and Intel 855GM chipsets also provide on-die termination, thus
eliminating the need to terminate the bus on the system board for most AGTL+ signals.
Refer to the platform design guides for board level termination resistor requirements.
The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for AGTL+
signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the
system bus, including trace lengths, is highly recommended when designing a system.
3.2 Power an d Ground Pins
For clean on-chip power distribution, the Intel Pentium M processor has a large number of VCC
(power) and VSS (ground) inputs. All power pins must be connected to VCC power planes while all
VSS pins must be connected to system ground planes. Use of multiple power and ground planes is
recommended to reduce I*R drop. Please refer to the platform design guides for more details. The
processor VCC pins must be supplied the voltage determined by the VID (Voltage ID) pins.
3.3 Decoupling Guidelines
Due to its large number of transistors and high internal clock speeds, the processor is capable of
generating large average current swings between low and full power states. This may cause
voltages on power planes to sag below their minimum values if bulk decoupling is not adequate.
Care must be taken in the board design to ensure that the voltage provided to the processor remains
w it hin the specifi ca t ions li ste d i n Table 5. Failure to do so can res ult i n timing viol ati ons or reduce d
lifetime of the component. For further information and design guidelines, refer to the platform
design guides.
18 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
3.3.1 VCC Decoupling
Regula tor solu tions need to provide bulk capaci tance w ith a low Eff ecti ve Series Resis tance (ESR)
and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the
large current swings when the part is powering on, or entering/exiting low-power states, must be
provided by the voltage regulator solution. For more details on decoupling recommendations,
please refer to the platform design guides. It is strongly recommended that the layout and
decoupling recommendations in the design guides be followed.
3.3 .2 System Bus AGTL+ De coupli ng
Intel Pentium M processors integrate signal termination on the die as well as incorporate high
frequency decoupling capacitance on the processor package. Decoupling must also be provided by
the system motherboard for proper AGTL+ bus operation. For more information, refer to the
platform design guides.
3.3.3 System Bu s C lock (BCLK [ 1: 0]) and Processor Cl ocki ng
BCLK[1:0] directly controls the system bus interface speed as well as the core frequency of the
processor. As in previous generation processors, the Intel Pentium M processor core frequency is a
multiple of the BCLK[1:0] frequency. In regards to processor clocking, the Intel Pentium M
processor uses a differential clocking implementation.
3.4 Voltage Iden tification
The Intel Pentium M processor uses six voltage identification pins, VID[5:0], to support automatic
selection of power supply voltages. The VID pins for the Intel Pentium M processor are CMOS
outputs driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding to
the state of VID[5:0]. A “1” in this refers to a high-voltage level and a “0” refers to low-voltage
level.
Intel® Pentium® M Processor Datasheet 19
Electr ical Specificati ons
Table 2. Volt age Identif icati on Definition
VID VCC
VVID VCC
V
543210 543210
0000 0 0 1.708 1 0 0 0 0 0 1.196
0000 1 0 1.676 1 0 0 0 1 0 1.164
0000 1 1 1.660 1 0 0 0 1 1 1.148
0001 0 0 1.644 1 0 0 1 0 0 1.132
0001 0 1 1.628 1 0 01 011.116
0001 1 0 1.612 1 0 0 1 1 0 1.100
0001 1 1 1.596 1 0 0 1 1 1 1.084
0010 0 0 1.580 1 0 1 0 0 0 1.068
0010 0 1 1.564 1 0 1 0 0 1 1.052
0010 1 0 1.548 1 0 1 0 1 0 1.036
0010 1 1 1.532 1 0 1 0 1 1 1.020
0011 0 0 1.516 1 0 1 1 0 0 1.004
0011 0 1 1.500 1 0 1 1 0 1 0.988
0011 1 0 1.484 1 0 1 1 1 0 0.972
0011 1 1 1.468 1 0 1 1 1 1 0.956
0100 0 0 1.452 1 1 0 0 0 0 0.940
0100 0 1 1.436 1 1 0 0 0 1 0.924
0100 1 0 1.420 1 1 0 0 1 0 0.908
0100 1 1 1.404 1 1 0 0 1 1 0.892
0101 0 0 1.388 1 1 0 1 0 0 0.876
0101 0 1 1.372 1 1 0 1 0 1 0.860
0101 1 0 1.356 1 1 0 1 1 0 0.844
0 1 0 1 1 1 1.340 1 1 0 1 1 1 0.828
0 1 1 0 0 0 1.324 1 1 1 0 0 0 0.812
0 1 1 0 0 1 1.308 1 1 1 0 0 1 0.796
0 1 1 0 1 0 1.292 1 1 1 0 1 0 0.780
0 1 1 0 1 1 1.276 1 1 1 0 1 1 0.764
0 1 1 1 0 0 1.260 1 1 1 1 0 0 0.748
0 1 1 1 0 1 1.244 1 1 1 1 0 1 0.732
0 1 1 1 1 0 1.228 1 1 1 1 1 0 0.716
0 1 1 1 1 1 1.212 1 1 1 1 1 1 0.700
20 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
3.5 Catastrophic T hermal Protection
The Intel Pentium M processor supports the THERMTRIP# signal for catastrophic thermal
protection. An external thermal sensor should also be used to protect the processor and the system
against excessive temperatures. Even with the activation of THERMTRIP#, that halts all processor
internal clocks and activity, leakage current can be high enough such that the processor cannot be
protected in all conditions without the removal of power to the processor. If the external thermal
se nsor detec ts a catastrophic p rocess or temperat ure of 125 °C ( maxi mum ), or i f the THE RMTRI P#
signal is asserted, the VCC supply to the processor must be turned off within
500 ms to prevent permanent silicon damage due to thermal runaway.
3.6 Signal Terminations and Unused Pins
All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to VCC, VSS, or
to any other signal (including each other) can result in component malfunction or incompatibility
with future Intel Pentium M processors. See Section 4.2 for a pin listing of the processor and the
location of all RSVD pins.
For reliable operation, always connect unused inputs or bidirectional signals to an appropriate
signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is
pr ovided on the proc essor s ili con. Unus ed a ctive high input s should be connect ed thr ough a r esis tor
to ground (VSS). Unused outputs can be left unconnected.
For details on signal terminations, please refer to the platform design guides. TAP signal
termination requirements are also discussed in ITP700 Debug Port Design Guide.
The TEST1, TEST2, and TEST3 pins must be left unconnected but should have a stuffing option
connection to VSS separately using 1-kΩ, pull-down resistors.
3.7 System Bus Signal Groups
To simplify the following discussion, the system bus signals have been combined into groups by
buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference
level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the
AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group
as well as the AGTL+ I/O group when driving.
Table 3 identifies which signals are common clock, source synchronous, and asynchronous.
Common clock signals w hich ar e depe ndent upon the crossing of t he rising edge of BCL K0 and the
falling edge of BCLK1. Source synchronous signals are relative to their respective strobe lines
(data and address) as well as the rising edge of BCLK0. Asychronous signals are still present
(A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle.
Intel® Pentium® M Processor Datasheet 21
Electr ical Specificati ons
NOTES:
1. BPM[2:0]# and PRDY# are AGTL+ output only signals.
2. In processor systems where there is no debug port implemented on the system board, these signals are used
to support a debug port interposer. In systems with the debug port implemented on the system board, these
signals are no connects
3.8 CMOS Signals
CMOS input signals are shown in Table 3. Legacy output FERR#, IERR# and other non-AGTL+
signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. All of the CMOS
signals are required to be asserted for at least three BCLKs in order for the chipset to recognize
them. See Section 3.10 for the DC specifications of the CMOS signal groups.
Table 3. System B us Pi n G r oups
Signal Group Type Signals
AGTL+ Common Clock Input Synchronous
to BCLK[1:0]
BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#,
TRDY#
AGTL+ Common Clock I/O Synchronous
to BCLK[1:0]
ADS#, BNR#, BPM[3:0]#1, BR0#, DBSY#, DRDY#, HIT#,
HITM#, LOCK#, PRDY#1
AGTL+ Source Synchronous I/O
Synchronous
to associated
strobe
AGTL+ Strobes Synchronous
to BCLK[1:0] ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#
CMOS Input Asynchronous A20M#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/
NMI, PWRGOOD, SMI#, SLP#, STPCLK#
Open Drain Output Asynchronous FERR#, IERR#, PROCHOT#, THERMTRIP#
CMOS Output Asynchronous PSI#, VID[5:0]
CMOS Input Synchronous
to TCK TCK, TDI, TMS, TRST#
Open Drain Output Synchronous
to TCK TDO
System Bus Clock Clock BCLK[1:0], ITP_CLK[1:0]
Power/Other
COMP[3:0], DBR#2, GTLREF, RSVD, TEST3, TEST2,
TEST1, THERMDA, THERMDC, VCC, VCC A[3:0], VCCP,
VCCQ[1:0], VCC_SENSE
, VSS, VSS_SENSE
S ig nals Asso ciated S trob e
REQ[4:0]#, A[16:3]# ADSTB[0]#
A[31:17]# ADSTB[1]#
D[15:0]#, DINV0# DSTBP0#, DSTBN0#
D[31:16]#, DINV1# DSTBP1#, DSTBN1#
D[47:32]#, DINV2# DSTBP2#, DSTBN2#
D[63:48]#, DINV3# DSTBP3#, DSTBN3#
22 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
3.9 Maximum Ratings
Table 4 lists the processors maximum environmental stress ratings. The processor should not
receive a clock while subjected to these conditions. Functional operating parameters are listed in
the DC tables. Extended exposure to the maximum ratings may affect device reliability.
Furthermore, although the processor includes protective circuitry to resist damage from Electro
Static Discharge (ESD), system designers must always take precautions to avoid high static
voltages or electric fields.
NOTES:
1. This rating applies to any processor pin.
2. Contact Intel for storage requirements in excess of one year.
3.10 Processor DC Specifications
Th e pr ocess or D C sp ecificat ions in this sec tion are defi ned at the p roces sor core (pad s) u nles s
noted otherwise. See Table 15 for the pin signal definitions and signal pin assignments. Most of
the signals on the processor system bus are in the AGTL+ signal group and the DC specifications
for these signals are also listed. DC specifications for the CMOS group are listed in Table 16.
Table 5 through Table 16 list the DC specifications for the Intel Pentium M processor and are valid
only while meeting specifications for junction temperature, clock frequency, and input voltages.
The Highest Frequency (HFM) and Lowest Frequency Modes (LFM) refer to the highest and
l owes t core operat ing frequencies suppor ted on the processor . Act ive Mode load li ne specifications
apply in all states except in the Deep Sleep and Deeper Sleep states. VCC,BOOT is the default
vol tage driven by the voltage r egulat or at power up in or der to s et the VI D values . U nless specified
otherwise, all specifications for the Intel Pentium M processor are at Tjunction = 100°C. Care
should be taken to read all notes associated with each parameter.
Table 4. Processor DC Absolute M aximum Rati ngs
Symbol Parameter Min Max Unit Notes
TSTORAGE Processor storage
temperature –40 85 °C 2
VCC
Any processor supply
voltage with respect to VSS
-0.3 1.75 V 1
VinAGTL+
AGTL+ buffer DC input
voltage with respect to VSS
-0.1 1.75 V 1, 2
VinAsynch_CMOS
CMOS buffer DC input
voltage with respect to VSS
-0.1 1.75 V 1, 2
Intel® Pentium® M Processor Datasheet 23
Electr ical Specificati ons
Table 5. Voltage and Curr ent Sp ecif i cations
Symbol Parameter Min Typ Max Unit Notes
VCC17
Intel Pentium M processor 1.70
GHz Core VCC
for Enhanced Intel
SpeedStep technology operating
points:
1.70 GHz
1.40 GHz
1.20 GHz
1.00 GHz
800 MHz
600 MHz
1.484
1.308
1.228
1.116
1.004
0.956
V1, 2
VCC16
Intel Pentium M processor 1.60
GHz Core VCC
for Enhanced Intel
SpeedStep technology operating
points:
1.60 GHz
1.40 GHz
1.20 GHz
1.00 GHz
800 MHz
600 MHz
1.484
1.420
1.276
1.164
1.036
0.956
V1, 2
VCC15
Intel Pentium M processor 1.50
GHz Core VCC
for Enhanced Intel
SpeedStep technology operating
points:
1.50 GHz
1.40 GHz
1.20 GHz
1.00 GHz
800 MHz
600 MHz
1.484
1.452
1.356
1.228
1.116
0.956
V1, 2
VCC14
Intel Pentium M processor 1.40
GHz Core VCC
for Enhanced Intel
SpeedStep technology operating
points:
1.40 GHz
1.20 GHz
1.00 GHz
800 MHz
600 MHz
1.484
1.436
1.308
1.180
0.956
V1, 2
VCC13
Intel Pentium M processor 1.30
GHz Core VCC
for Enhanced Intel
SpeedStep technology operating
points:
1.30 GHz
1.20 GHz
1.00 GHz
800 MHz
600 MHz
1.388
1.356
1.292
1.260
0.956
V1, 2
24 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
VCCLV13
Low Voltage Intel Pentium M
processor 1.30 GHz
Core VCC for Enhanced Intel
SpeedStep technology operating
points:
1.30 GHz
1.20 GHz
1.10 GHz
1.00 GHz
900 MHz
800 MHz
600 MHz
1.180
1.164
1.100
1.020
1.004
0.988
0.956
V1,2
VCCLV12
Low Voltage Intel Pentium M
processor 1.20 GHz
Core VCC for Enhanced Intel
SpeedStep technology operating
points:
1.20 GHz
1.10 GHz
1.00 GHz
900 MHz
800 MHz
600 MHz
1.180
1.164
1.100
1.020
1.004
0.956
V1,2
VC CLV11
Low Voltage Intel Pentium M
processor 1.10 GHz
Core VCC for Enhanced Intel
SpeedStep technology operating
points:
1.10 GHz
1.00 GHz
900 MHz
800 MHz
600 MHz
1.180
1.164
1.100
1.020
0.956
V1, 2
VCCULV11
Ultra Low Voltage Intel Pentium M
processor 1.10 GHz
Core VCCfor Enhanced Intel
SpeedStep technology operating
points:
1.10 GHz
1.00 GHz
900 MHz
800 MHz
600 MHz
1.004
0.988
0.972
0.956
0.844
VCCULV10
Ultra Low Voltage Intel Pentium M
processor 1.00 GHz
Core VCC for Enhanced Intel
SpeedStep technology operating
points:
1.00 GHz
900 MHz
800 MHz
600 MHz
1.004
0.988
0.972
0.844
V1, 2
Symbol Parameter Min Typ Max Unit Notes
Intel® Pentium® M Processor Datasheet 25
Electr ical Specificati ons
VCCULV9
Ultra Low Voltage Intel Pentium M
processor 900 MHz
Core VCC for Enhanced Intel
SpeedStep technology operating
points:
900 MHz
800 MHz
600 MHz
1.004
0.988
0.844
V1, 2
VCC,BOOT
Default VCC Voltage for initial
power up 1.14 1.20 1.26 V 2
VCCP AGTL+ Termination Voltage 0.997 1.05 1.102 V 2
VCCA PLL Supply Voltage 1.71 1.8 1.89 V 2
VCCDPRSLP,TR Transient Deeper Sleep voltage 0.695 0.748 0.795 V 2
VCCDPRSLP,ST Static Deeper Sleep voltage 0.705 0.748 0.785 V 2
ICCDES
ICC for Intel Pentium M processors
Recommended Design Target 25 A 5
ICC
ICC for Intel Pentium M processors
by Frequency/Voltage:
600 MHz & 0.844 V
600 MHz & 0.956 V
900 MHz & 1.004 V
1.00 GHz & 1.004 V
1.10 GHz & 1.004 V
1.10 GHz & 1.180 V
1.20 GHz & 1.180 V
1.30 GHz & 1.180 V
1.30 GHz & 1.388 V
1.40 GHz & 1.484 V
1.50 GHz & 1.484 V
1.60 GHz & 1.484 V
1.70 GHz & 1.484 V
5
6.8
9
9
9
12
12
12.5
19
18
21
21
21
A3
IAH,
ISGNT
ICC Auto-Halt & Stop-Grant at:
0.844 V (ULV Pentium M)
0.956 V
1.004 V (ULV Pentium M)
1.180 V
1.388 V (Pentium M 1.30 GHz)
1.484 V
1.8
3.3
2.7
4.7
9.4
8.6
A4
ISLP
ICC Sleep at:
0.844 V (ULV Pentium M)
0.956 V
1.004 V (ULV Pentium M)
1.180 V
1.388 V (Pentium M 1.30 GHz)
1.484 V
1.7
3.3
2.6
4.6
9.2
8.4
A4
IDSLP
ICC Deep Sleep at:
0.844 V (ULV Pentium M)
0.956 V
1.004 V (ULV Pentium M)
1.180 V
1.388 V (Pentium M 1.30 GHz)
1.484 V
1.6
3.1
2.3
4.2
8.8
7.8
A4
IDPRSLP ICC Deeper Sleep 1.8 A 4
Symbol Parameter Min Typ Max Unit Notes
26 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
NOTES:
1. The typical values shown are the VID encoded voltages. Static and Ripple tolerances (for minimum and
maximum voltages) are defined in the load line tables i.e. Table 6 through Table 13.
2. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the
processors socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe
capacitance, and 1-Mohm minimum impedance. The maximum length of ground wire on the probe should be
less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
3. Specified at VCC,STATIC (nominal) under maximum signal loading conditions.
4. Specified at the VID voltage.
5. The ICCDES(max) specification comprehends future processor HFM frequencies. Platforms should be
designed to this specification.
6. Based on simulations and averaged over the duration of any change in current. Specified by design/
characterization at nominal VCC. Not 100% tested.
7. Measured at the bulk capacitors on the motherboard.
IDPRSLPULV
ICC Deeper Sleep (ULV Intel
Pentium M only) 1.2 A 4
dICC/DT
VCC power supply current slew
rate 0.5 A/ns 6, 7
ICCA ICC for VCCA
supply 120 mA
ICCP ICC for VCCP
supply 2.5 A
Symbol Parameter Min Typ Max Unit Notes
Intel® Pentium® M Processor Datasheet 27
Electr ical Specificati ons
Table 6. V ol t age Tolerances for In tel P ent ium M Processors with HFM VID = 1. 484 V (Active
State)
Mode
Hi ghest Frequency Mode: VI D = 1.484 V,
Offset = 0% Lowest Fr equency Mode: VI D = 0.956 V,
Of fset = 0%
ICC, A VCC, V STATIC Ripple ICC, A VCC, V STATIC Ripple
Min Max Min Max Min Max Min Max
ACTIVE
0 1.484 1.462 1.506 1.452 1.516 0.0 0.956 0.942 0.970 0.932 0.980
0.9 1.481 1.459 1.503 1.449 1.513 0.4 0.955 0.941 0.969 0.931 0.979
1.9 1.478 1.456 1.501 1.446 1.511 0.7 0.954 0.940 0.968 0.930 0.978
2.8 1.476 1.453 1.498 1.443 1.508 1.1 0.953 0.938 0.967 0.928 0.977
3.7 1.473 1.451 1.495 1.441 1.505 1.4 0.952 0.937 0.966 0.927 0.976
4.6 1.470 1.448 1.492 1.438 1.502 1.8 0.951 0.936 0.965 0.926 0.975
5.6 1.467 1.445 1.490 1.435 1.500 2.1 0.950 0.935 0.964 0.925 0.974
6.5 1.465 1.442 1.487 1.432 1.497 2.5 0.948 0.934 0.963 0.924 0.973
7.4 1.462 1.440 1.484 1.430 1.494 2.9 0.947 0.933 0.962 0.923 0.972
8.3 1.459 1.437 1.481 1.427 1.491 3.2 0.946 0.932 0.961 0.922 0.971
9.3 1.456 1.434 1.478 1.424 1.488 3.6 0.945 0.931 0.960 0.921 0.970
10.2 1.453 1.431 1.476 1.421 1.486 3.9 0.944 0.930 0.959 0.920 0.969
11.1 1.451 1.428 1.473 1.418 1.483 4.3 0.943 0.929 0.957 0.919 0.967
12.0 1.448 1.426 1.470 1.416 1.480 4.7 0.942 0.928 0.956 0.918 0.966
13.0 1.445 1.423 1.467 1.413 1.477 5.0 0.941 0.927 0.955 0.917 0.965
13.9 1.442 1.420 1.465 1.410 1.475 5.4 0.940 0.926 0.954 0.916 0.964
14.8 1.440 1.417 1.462 1.407 1.472 5.7 0.939 0.924 0.953 0.914 0.963
15.7 1.437 1.415 1.459 1.405 1.469 6.1 0.938 0.923 0.952 0.913 0.962
16.7 1.434 1.412 1.456 1.402 1.466 6.4 0.937 0.922 0.951 0.912 0.961
17.6 1.431 1.409 1.453 1.399 1.463 6.8 0.936 0.921 0.950 0.911 0.960
18.5 1.428 1.406 1.451 1.396 1.461
19.4 1.426 1.403 1.448 1.393 1.458
20.4 1.423 1.401 1.445 1.391 1.455
21.3 1.420 1.398 1.442 1.388 1.452
22.2 1.417 1.395 1.440 1.385 1.450
23.1 1.415 1.392 1.437 1.382 1.447
24.1 1.412 1.390 1.434 1.380 1.444
25.0 1.409 1.387 1.431 1.377 1.441
28 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
Figure 2. I ll ust ration of Active State VCC Static and Ripple Tolerances (Highest Frequency
Mode)
Highest-Frequency M ode (VID = 1.484V): A ctive
1.484
1.360
1.380
1.400
1.420
1.440
1.460
1.480
1.500
1.520
1.540
0 5 10 15 20 25
Icc,
A
Vcc, V
STATIC Static Min Static Max Ri pp le Mi n Ripple Max
Intel® Pentium® M Processor Datasheet 29
Electr ical Specificati ons
Table 7. Voltage Tolerances for Intel Pentium M Processors with HFM VID = 1.484 V (Deep Sleep State)
Mode
Highest Frequency Mode : VID = 1.484 V,
Offset = 1.2% L owes t Fr equen cy M od e: VID = 0.956 V,
Of fset = 1. 2%
ICC, A VCC, V STATIC Ripple ICC, A VCC, V STATIC Ripple
Min Max Min Max Min Max Min Max
D eep Sleep
0.0 1.466 1.444 1.488 1.434 1.498 0.0 0.945 0.930 0.959 0.920 0.969
0.5 1.465 1.442 1.487 1.432 1.497 0.2 0.944 0.930 0.958 0.920 0.968
1.0 1.463 1.441 1.485 1.431 1.495 0.4 0.943 0.929 0.958 0.919 0.968
1.6 1.462 1.439 1.484 1.429 1.494 0.6 0.943 0.928 0.957 0.918 0.967
2.1 1.460 1.438 1.482 1.428 1.492 0.8 0.942 0.928 0.956 0.918 0.966
2.6 1.458 1.436 1.481 1.426 1.491 1.0 0.941 0.927 0.956 0.917 0.966
3.1 1.457 1.435 1.479 1.425 1.489 1.2 0.941 0.926 0.955 0.916 0.965
3.6 1.455 1.433 1.478 1.423 1.488 1.4 0.940 0.926 0.955 0.916 0.965
4.2 1.454 1.431 1.476 1.421 1.486 1.7 0.940 0.925 0.954 0.915 0.964
4.7 1.452 1.430 1.474 1.420 1.484 1.9 0.939 0.925 0.953 0.915 0.963
5.2 1.451 1.428 1.473 1.418 1.483 2.1 0.938 0.924 0.953 0.914 0.963
5.7 1.449 1.427 1.471 1.417 1.481 2.3 0.938 0.923 0.952 0.913 0.962
6.2 1.447 1.425 1.470 1.415 1.480 2.5 0.937 0.923 0.951 0.913 0.961
6.8 1.446 1.424 1.468 1.414 1.478 2.7 0.936 0.922 0.951 0.912 0.961
7.3 1.444 1.422 1.467 1.412 1.477 2.9 0.936 0.922 0.950 0.912 0.960
7.8 1.443 1.421 1.465 1.411 1.475 3.1 0.936 0.921 0.950 0.911 0.960
30 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
Figure 3. I ll ust ration of Deep Sleep St ate V ol t age T o lerances (Lowest Frequency Mode)
Lowest-Frequency Mo de (VID = 0 .9 56V): Deep Sleep
0.945
0. 900
0. 910
0. 920
0. 930
0. 940
0. 950
0. 960
0. 970
0. 980
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Icc ,
A
Vcc, V
STATIC Static Min Stati c Max Ripple Min Ripple Max
Intel® Pentium® M Processor Datasheet 31
Electr ical Specificati ons
Table 8. Volt age T olerances for Intel P ent ium M Processors with HFM VID = 1. 388 V (Acti ve
State)
Mode
Highes t Fr equency M ode: VID = 1.388 V,
Offset = 0% L owe st Frequency Mo de: VID = 0. 956 V,
Offset = 0%
VCC, A VCC, V STATIC Ripple ICC, A V CC, V STATIC Ripple
Min Max Min Max Min Max Min Max
ACTIVE
0 1.388 1.367 1.409 1.357 1.419 0.0 0.956 0.942 0.970 0.932 0.980
0.9 1.385 1.364 1.406 1.354 1.416 0.4 0.955 0.941 0.969 0.931 0.979
1.9 1.382 1.362 1.403 1.352 1.413 0.7 0.954 0.940 0.968 0.930 0.978
2.8 1.380 1.359 1.400 1.349 1.410 1.1 0.953 0.938 0.967 0.928 0.977
3.7 1.377 1.356 1.398 1.346 1.408 1.4 0.952 0.937 0.966 0.927 0.976
4.6 1.374 1.353 1.395 1.343 1.405 1.8 0.951 0.936 0.965 0.926 0.975
5.6 1.371 1.351 1.392 1.341 1.402 2.1 0.950 0.935 0.964 0.925 0.974
6.5 1.369 1.348 1.389 1.338 1.399 2.5 0.948 0.934 0.963 0.924 0.973
7.4 1.366 1.345 1.387 1.335 1.397 2.9 0.947 0.933 0.962 0.923 0.972
8.3 1.363 1.342 1.384 1.332 1.394 3.2 0.946 0.932 0.961 0.922 0.971
9.3 1.360 1.339 1.381 1.329 1.391 3.6 0.945 0.931 0.960 0.921 0.970
10.2 1.357 1.337 1.378 1.327 1.388 3.9 0.944 0.930 0.959 0.920 0.969
11.1 1.355 1.334 1.375 1.324 1.385 4.3 0.943 0.929 0.957 0.919 0.967
12.0 1.352 1.331 1.373 1.321 1.383 4.7 0.942 0.928 0.956 0.918 0.966
13.0 1.349 1.328 1.370 1.318 1.380 5.0 0.941 0.927 0.955 0.917 0.965
13.9 1.346 1.326 1.367 1.316 1.377 5.4 0.940 0.926 0.954 0.916 0.964
14.8 1.344 1.323 1.364 1.313 1.374 5.7 0.939 0.924 0.953 0.914 0.963
15.7 1.341 1.320 1.362 1.310 1.372 6.1 0.938 0.923 0.952 0.913 0.962
16.7 1.338 1.317 1.359 1.307 1.369 6.4 0.937 0.922 0.951 0.912 0.961
17.6 1.335 1.314 1.356 1.304 1.366 6.8 0.936 0.921 0.950 0.911 0.960
18.5 1.332 1.312 1.353 1.302 1.363
19.4 1.330 1.309 1.350 1.299 1.360
20.4 1.327 1.306 1.348 1.296 1.358
21.3 1.324 1.303 1.345 1.293 1.355
22.2 1.321 1.301 1.342 1.291 1.352
23.1 1.319 1.298 1.339 1.288 1.349
24.1 1.316 1.295 1.337 1.285 1.347
25.0 1.313 1.292 1.334 1.282 1.344
32 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
Table 9. Volt age T olerances for Intel P ent ium M Processors with HFM VID = 1. 388 V (Deep
Sleep State)
Mode
Highest Freq uency Mode: VI D =1.388 V,
Offset = 1.2% Lo west Frequency Mode: VI D = 0.956 V,
O ffset = 1. 2%
ICC, A VCC, V STATIC Ripple ICC, A VCC, V STATIC Ripple
Min Max Min Max Min Max Min Max
D eep Sleep
0.0 1.371 1.351 1.392 1.341 1.402 0.0 0.945 0.930 0.959 0.920 0.969
0.6 1.370 1.349 1.390 1.339 1.400 0.2 0.944 0.930 0.958 0.920 0.968
1.2 1.368 1.347 1.389 1.337 1.399 0.4 0.943 0.929 0.958 0.919 0.968
1.8 1.366 1.345 1.387 1.335 1.397 0.6 0.943 0.928 0.957 0.918 0.967
2.3 1.364 1.343 1.385 1.333 1.395 0.8 0.942 0.928 0.956 0.918 0.966
2.9 1.363 1.342 1.383 1.332 1.393 1.0 0.941 0.927 0.956 0.917 0.966
3.5 1.361 1.340 1.382 1.330 1.392 1.2 0.941 0.926 0.955 0.916 0.965
4.1 1.359 1.338 1.380 1.328 1.390 1.4 0.940 0.926 0.955 0.916 0.965
4.7 1.357 1.336 1.378 1.326 1.388 1.7 0.940 0.925 0.954 0.915 0.964
5.3 1.356 1.335 1.376 1.325 1.386 1.9 0.939 0.925 0.953 0.915 0.963
5.9 1.354 1.333 1.375 1.323 1.385 2.1 0.938 0.924 0.953 0.914 0.963
6.5 1.352 1.331 1.373 1.321 1.383 2.3 0.938 0.923 0.952 0.913 0.962
7.0 1.350 1.329 1.371 1.319 1.381 2.5 0.937 0.923 0.951 0.913 0.961
7.6 1.348 1.328 1.369 1.318 1.379 2.7 0.936 0.922 0.951 0.912 0.961
8.2 1.347 1.326 1.368 1.316 1.378 2.9 0.936 0.922 0.950 0.912 0.960
8.8 1.345 1.324 1.366 1.314 1.376 3.1 0.936 0.921 0.950 0.911 0.960
Intel® Pentium® M Processor Datasheet 33
Electr ical Specificati ons
Table 10. V ol tage Tolerances fo r Lo w Voltag e Intel Pentium M Processors (Active State)
Mode
Highes t Fr equency M ode: VID = 1.180 V,
Offset = 0% L owe st Frequency Mo de: VID = 0. 956 V,
Offset = 0%
VCC, A VCC, V STATIC Ripple ICC, A V CC, V STATIC Ripple
Min Max Min Max Min Max Min Max
ACTIVE
0 1.180 1.162 1.198 1.152 1.208 0.0 0.956 0.942 0.970 0.932 0.980
0.4 1.179 1.161 1.196 1.151 1.206 0.4 0.955 0.941 0.969 0.931 0.979
0.9 1.177 1.160 1.195 1.150 1.205 0.7 0.954 0.940 0.968 0.930 0.978
1.3 1.176 1.158 1.194 1.148 1.204 1.1 0.953 0.938 0.967 0.928 0.977
1.8 1.175 1.157 1.192 1.147 1.202 1.4 0.952 0.937 0.966 0.927 0.976
2.2 1.173 1.156 1.191 1.146 1.201 1.8 0.951 0.936 0.965 0.926 0.975
2.7 1.172 1.154 1.190 1.144 1.200 2.1 0.950 0.935 0.964 0.925 0.974
3.1 1.171 1.153 1.188 1.143 1.198 2.5 0.948 0.934 0.963 0.924 0.973
3.6 1.169 1.152 1.187 1.142 1.197 2.9 0.947 0.933 0.962 0.923 0.972
4.0 1.168 1.150 1.186 1.140 1.196 3.2 0.946 0.932 0.961 0.922 0.971
4.4 1.167 1.149 1.184 1.139 1.194 3.6 0.945 0.931 0.960 0.921 0.970
4.9 1.165 1.148 1.183 1.138 1.193 3.9 0.944 0.930 0.959 0.920 0.969
5.3 1.164 1.146 1.182 1.136 1.192 4.3 0.943 0.929 0.957 0.919 0.967
5.8 1.163 1.145 1.180 1.135 1.190 4.7 0.942 0.928 0.956 0.918 0.966
6.2 1.161 1.144 1.179 1.134 1.189 5.0 0.941 0.927 0.955 0.917 0.965
6.7 1.160 1.142 1.178 1.132 1.188 5.4 0.940 0.926 0.954 0.916 0.964
7.1 1.159 1.141 1.176 1.131 1.186 5.7 0.939 0.924 0.953 0.914 0.963
7.6 1.157 1.140 1.175 1.130 1.185 6.1 0.938 0.923 0.952 0.913 0.962
8.0 1.156 1.138 1.174 1.128 1.184 6.4 0.937 0.922 0.951 0.912 0.961
8.4 1.155 1.137 1.172 1.127 1.182 6.8 0.936 0.921 0.950 0.911 0.960
8.9 1.153 1.136 1.171 1.126 1.181
9.3 1.152 1.134 1.170 1.124 1.180
9.8 1.151 1.133 1.168 1.123 1.178
10.2 1.149 1.132 1.167 1.122 1.177
10.7 1.148 1.130 1.166 1.120 1.176
11.1 1.147 1.129 1.164 1.119 1.174
11.6 1.145 1.128 1.163 1.118 1.173
12.0 1.144 1.126 1.162 1.116 1.172
34 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
Table 1 1. Voltage Tolerances for Low Voltage Intel Penti um M Processors (Deep Sleep St ate)
Mode
Highest Frequency Mode : VID = 1.180 V,
Offset = 1.2% Lo west Frequency Mode: VI D = 0.956 V,
O ffset = 1. 2%
ICC, A VCC, V STATIC Ripple ICC, A VCC, V STATIC Ripple
Min Max Min Max Min Max Min Max
D eep Sleep
0.0 1.166 1.148 1.184 1.138 1.194 0.0 0.945 0.930 0.959 0.920 0.969
0.3 1.165 1.147 1.183 1.137 1.193 0.2 0.944 0.930 0.958 0.920 0.968
0.6 1.164 1.146 1.182 1.136 1.192 0.4 0.943 0.929 0.958 0.919 0.968
0.8 1.163 1.146 1.181 1.136 1.191 0.6 0.943 0.928 0.957 0.918 0.967
1.1 1.162 1.145 1.180 1.135 1.190 0.8 0.942 0.928 0.956 0.918 0.966
1.4 1.162 1.144 1.179 1.134 1.189 1.0 0.941 0.927 0.956 0.917 0.966
1.7 1.161 1.143 1.179 1.133 1.189 1.2 0.941 0.926 0.955 0.916 0.965
2.0 1.160 1.142 1.178 1.132 1.188 1.4 0.940 0.926 0.955 0.916 0.965
2.2 1.159 1.141 1.177 1.131 1.187 1.7 0.940 0.925 0.954 0.915 0.964
2.5 1.158 1.141 1.176 1.131 1.186 1.9 0.939 0.925 0.953 0.915 0.963
2.8 1.157 1.140 1.175 1.130 1.185 2.1 0.938 0.924 0.953 0.914 0.963
3.1 1.157 1.139 1.174 1.129 1.184 2.3 0.938 0.923 0.952 0.913 0.962
3.4 1.156 1.138 1.173 1.128 1.183 2.5 0.937 0.923 0.951 0.913 0.961
3.6 1.155 1.137 1.173 1.127 1.183 2.7 0.936 0.922 0.951 0.912 0.961
3.9 1.154 1.136 1.172 1.126 1.182 2.9 0.936 0.922 0.950 0.912 0.960
4.2 1.153 1.136 1.171 1.126 1.181 3.1 0.936 0.921 0.950 0.911 0.960
Intel® Pentium® M Processor Datasheet 35
Electr ical Specificati ons
Table 12. V ol tage Tolerances fo r Ultra Low Volt age Intel Pentium M Processors (Act ive S tat e)
Mode
Highes t Fr equency M ode: VID = 1.004 V,
Offset = 0% L owe st Frequency Mo de: VID = 0. 844 V,
Offset = 0%
VCC, A VCC, V STATIC Ripple ICC, A V CC, V STATIC Ripple
Min Max Min Max Min Max Min Max
ACTIVE
0 1.004 0.989 1.019 0.979 1.029 0.0 0.844 0.831 0.857 0.821 0.867
0.3 1.003 0.988 1.018 0.978 1.028 0.3 0.843 0.831 0.856 0.821 0.866
0.7 1.002 0.987 1.017 0.977 1.027 0.5 0.842 0.830 0.855 0.820 0.865
1.0 1.001 0.986 1.016 0.976 1.026 0.8 0.842 0.829 0.854 0.819 0.864
1.3 1.000 0.985 1.015 0.975 1.025 1.1 0.841 0.828 0.854 0.818 0.864
1.7 0.999 0.984 1.014 0.974 1.024 1.3 0.840 0.827 0.853 0.817 0.863
2.0 0.998 0.983 1.013 0.973 1.023 1.6 0.839 0.827 0.852 0.817 0.862
2.3 0.997 0.982 1.012 0.972 1.022 1.8 0.838 0.826 0.851 0.816 0.861
2.7 0.996 0.981 1.011 0.971 1.021 2.1 0.838 0.825 0.850 0.815 0.860
3.0 0.995 0.980 1.010 0.970 1.020 2.4 0.837 0.824 0.850 0.814 0.860
3.3 0.994 0.979 1.009 0.969 1.019 2.6 0.836 0.823 0.849 0.813 0.859
3.7 0.993 0.978 1.008 0.968 1.018 2.9 0.835 0.823 0.848 0.813 0.858
4.0 0.992 0.977 1.007 0.967 1.017 3.2 0.835 0.822 0.847 0.812 0.857
4.3 0.991 0.976 1.006 0.966 1.016 3.4 0.834 0.821 0.846 0.811 0.856
4.7 0.990 0.975 1.005 0.965 1.015 3.7 0.833 0.820 0.846 0.810 0.856
5.0 0.989 0.974 1.004 0.964 1.014 3.9 0.832 0.820 0.845 0.810 0.855
5.3 0.988 0.973 1.003 0.963 1.013 4.2 0.831 0.819 0.844 0.809 0.854
5.7 0.987 0.972 1.002 0.962 1.012 4.5 0.831 0.818 0.843 0.808 0.853
6.0 0.986 0.971 1.001 0.961 1.011 4.7 0.830 0.817 0.842 0.807 0.852
6.3 0.985 0.970 1.000 0.960 1.010 5.0 0.829 0.816 0.842 0.806 0.852
6.7 0.984 0.969 0.999 0.959 1.009
7.0 0.983 0.968 0.998 0.958 1.008
7.3 0.982 0.967 0.997 0.957 1.007
7.7 0.981 0.966 0.996 0.956 1.006
8.0 0.980 0.965 0.995 0.955 1.005
8.3 0.979 0.964 0.994 0.954 1.004
8.7 0.978 0.963 0.993 0.953 1.003
9.0 0.977 0.962 0.992 0.952 1.002
36 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
Table 13. V ol tage Tolerances fo r Ultra Low Volt age Intel Pentium M Processors (Deep Sleep
State)
Mode
Highest Frequency Mode : VID = 1.004 V,
Offset = 1.2% Lo west Frequency Mode: VI D = 0.844 V,
O ffset = 1. 2%
ICC, A VCC, V STATIC Ripple ICC, A VCC, V STATIC Ripple
Min Max Min Max Min Max Min Max
D eep Sleep
0.0 0.992 0.977 1.007 0.967 1.017 0.0 0.834 0.821 0.847 0.811 0.857
0.2 0.992 0.976 1.007 0.966 1.017 0.1 0.834 0.821 0.846 0.811 0.856
0.3 0.991 0.976 1.006 0.966 1.016 0.2 0.833 0.821 0.846 0.811 0.856
0.5 0.991 0.976 1.006 0.966 1.016 0.3 0.833 0.820 0.846 0.810 0.856
0.6 0.990 0.975 1.005 0.965 1.015 0.4 0.833 0.820 0.845 0.810 0.855
0.8 0.990 0.975 1.005 0.965 1.015 0.5 0.832 0.820 0.845 0.810 0.855
0.9 0.989 0.974 1.004 0.964 1.014 0.6 0.832 0.819 0.845 0.809 0.855
1.1 0.989 0.974 1.004 0.964 1.014 0.7 0.832 0.819 0.844 0.809 0.854
1.2 0.988 0.973 1.003 0.963 1.013 0.9 0.831 0.819 0.844 0.809 0.854
1.4 0.988 0.973 1.003 0.963 1.013 1.0 0.831 0.818 0.844 0.808 0.854
1.5 0.987 0.972 1.002 0.962 1.012 1.1 0.831 0.818 0.843 0.808 0.853
1.7 0.987 0.972 1.002 0.962 1.012 1.2 0.830 0.818 0.843 0.808 0.853
1.8 0.986 0.971 1.002 0.961 1.012 1.3 0.830 0.817 0.843 0.807 0.853
2.0 0.986 0.971 1.001 0.961 1.011 1.4 0.830 0.817 0.842 0.807 0.852
2.1 0.986 0.970 1.001 0.960 1.011 1.5 0.829 0.817 0.842 0.807 0.852
2.3 0.985 0.970 1.000 0.960 1.010 1.6 0.829 0.816 0.842 0.806 0.852
Intel® Pentium® M Processor Datasheet 37
Electr ical Specificati ons
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of
BCLK1.
3. Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver
switches. It includes input threshold hysteresis.
4. For Vin between 0 V and VH.
5. Cpad includes die capacitance only. No package parasitics are included.
6. VCR OSS is defined as the total variation of all crossing voltages as defined in note 2.
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high
value.
4. This is the pull down driver resistance. Measured at 0.31*VCCP. RON (min) = 0.38*RTT, RON (typ) = 0.45*RTT,
RON (max) = 0.52*RTT.
5. GTLREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP referred to in these
specifications is the instantaneous VCCP.
6. RTT is the on-die termination resistance measured at VOL of the AGTL+ output driver. Measured at
0.31*VCCP. RTT is connected to VCCP on die.
7. Specified with on die RTT and RON are turned off.
8. Cpad includes die capacitance only. No package parasitics are included.
Table 14. System B us Di ff er entia l BCLK Specificat ions
Symbol Parameter Min Typ Max Unit Notes1
VLInput Low Voltage 0 V
VHInput High Voltage 0.660 0.710 0.850 V
VCROSS Crossing Voltage 0.25 0.35 0.55 V 2
VCR OSS
Range of Crossing Points N/A N/A 0.140 V 6
VTH Threshold Region VCROSS -0.100 VCROSS+0.100 V 3
ILI Input Leakage Current ± 100 µA 4
Cpad Pad Capacitance 1.8 2.3 2.75 pF 5
Table 15. AGTL+ Signa l G roup DC Specificati ons
Symbol Parameter Min Typ Max Unit Notes1
VCCP I/O Voltage 0.997 1.05 1.102 V
GTLREF Reference Voltage 2/3 VCCP -
2% 2/3 VCCP 2/3 VCCP +
2% V5
VIH Input High Voltage GTLREF+0.1 VCCP+0.1 V 3,5
VIL Input Low Voltage -0.1 GTLREF-0.1 V 2
VOH Output High Voltage VCCP 5
RTT Termination Resistance 47 55 63 6
RON Buffer On Resistance 17.7 24.7 32.9 W 4
ILI Input Leakage Current ± 100 µA 7
Cpad Pad Capacitance 1.8 2.3 2.75 pF 8
38 Intel® Pentium® M Processor Datasheet
Electr ical Specificati ons
.
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The VCCP referred to in these specifications refers to instantaneous VCCP.
3. Measured at 0.1*VCCP.
4. Measured at 0.9*VCCP.
5. For Vin between 0V and VCCP. Measured when the driver is tristated.
6. Cpad includes die capacitance only. No package parasitics are included.
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. Measured at 0.2 V
3. VOH is determined by value of the external pullup resistor to VCCP. Please refer to the design guide for
details.
4. For Vin between 0 V and VOH.
5. Cpad includes die capacitance only. No package parasitics are included.
Table 16. CMOS Sign al Grou p DC Speci fi catio ns
Symbol Parameter Min Typ Max Unit Notes1
VCCP I/O Voltage 0.997 1.05 1.102 V
VIL Input Low Voltage
CMOS -0.1 0.3*VCCP V 2
VIH Input High Voltage 0.7*VCCP VCCP+0.1 V 2
VOL Output Low Voltage -0.1 0 0.1*VCCP V 2
VOH Output High Voltage 0.9*VCCP VCCP VCCP+0.1 V 2
IOL Output Low Current 1.49 4.08 mA 3
IOH Output High Current 1.49 4.08 mA 4
ILI Leakage Current ± 100 µA 5
Cpad Pad Capacitance 1.0 2.3 3.0 pF 6
Table 17. Open D rain Signal Group DC Speci fi cation s
Symbol Parameter Min Typ Max Unit Notes1
VOH Output High Voltage VCCP V 3
VOL Output Low Voltage 0 0.20 V
IOL Output Low Current 16 50 mA 2
ILO Leakage Current ± 200 µA 4
Cpad Pad Capacitance 1.7 2.3 3.0 pF 5
Intel® Pentium® M Processor Datasheet 39
Pac kage Mechani cal Specifications and Pin In form at io n
4Package Mechanical
Specifica tions and Pin Inform ation
The Intel Pentium M processor is available in 478-pin, Micro-FCPGA and 479-ball, Micro-
FCBGA packages. The Low Voltage and Ultra Low Voltage Intel Pentium M processors are
available only in the Micro-FCBGA package. Different views of the Micro-FCPGA package are
shown in Figure 4 through Figure 6. Package dimensions are shown in Table 18. Different views of
the Micro-FCBGA package are shown in Figure 8 through Figure 10. Package dimensions are
shown in Table 19. The Intel Pentium M Processor Die Offset is illustrated in Figure 7.
The Micro-FCBGA may have capacitors placed in the area surrounding the die. Because the die-
side capacitors ar e e lectrically conduct ive, and only sl ightl y shorter than the die hei ght, care shoul d
be taken to avoid contacting the capacitors with electrically conductive materials. Doing so may
short the capacitors, and possibly damage the device or render it inactive. The use of an insulating
material between the capacitors and any thermal solution is recommended to prevent capacitor
shorting.
Fi gur e 4. Micro-FCP GA Package Top and Bot tom Isomet ri c Views
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Ta bl e 18 for details.
TOP VIEW BOTTOM VIEW
LABEL
PACKAGE KEEPOUT
DIE
CAPACITOR AREA
40 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
Fi gur e 5. Micro-FCP GA Package - Top and Si de Views
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Ta bl e 18 for details.
35 (E)
35 (D)
P IN A1 CORNER
E1
D1
A
1.25 MAX
(A3)
Ø 0.32 (B)
478 places
2.03
± 0.08
(A1)
A2
SUBSTRATE KEEPOUT ZONE
DO NOT CONTACT PACKAGE
INSID E THIS L IN E
7 (K 1)
8 places
5 (K)
4 plac es
0.286
35 (E)
35 (D)
P IN A1 CORNER
E1
D1
A
1.25 MAX
(A3)
Ø 0.32 (B)
478 places
2.03
± 0.08
(A1)
A2
SUBSTRATE KEEPOUT ZONE
DO NOT CONTACT PACKAGE
INSID E THIS L IN E
7 (K 1)
8 places
5 (K)
4 plac es
0.286
0.286
Intel® Pentium® M Processor Datasheet 41
Pac kage Mechani cal Specifications and Pin In form at io n
Figu re 6. Micro-FCPGA Package - Bottom View
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Ta bl e 18 for details.
Figu re 7. Int el Pentium M Processor Die Offset
1 2 3 4 6 8 10 12 14 16 18 20 22 24 26
5 7 9 11 13 15 17 19 21 23 25
A
B C
E
D
F G
H J
K L
M N
P R
T U
V W
Y AA
AB AC
AD AE
AF
25X 1.2 7
(e)
25X 1.27
(e)
14 (K3)
14 (K3)
D1
E1
(F)
(G)
42 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
Table 18. Micro-FCPGA Package Dimensions
NOTE: Overall height with socket is based on design dimensions of the Micro-FCPGA package with no thermal
solution attached. Values are based on design specifications and tolerances. This dimension is subject
to change based on socket design, OEM motherboard design or OEM SMT process.
Symbol Parameter Min Max Unit
A Overall height, top of die to package seating plane 1.88 2.02 mm
-
Overall height, top of die to PCB surface, including
socket (Refer to Note 1) 4.74 5.16 mm
A1 Pin length 1.95 2.11 mm
A2 Die height 0.82 mm
A3 Pin-side capacitor height - 1.25 mm
B Pin diameter 0.28 0.36 mm
D Package substrate length 34.9 35.1 mm
E Package substrate width 34.9 35.1 mm
D1 Die length 10.56 mm
E1 Die width 7.84 mm
F To Package Substrate Center 17.5 mm
G Die Offset from Package Center 1.133 mm
e Pin pitch 1.27 mm
K Package edge keep-out 5 mm
K1 Package corner keep-out 7 mm
K3 Pin-side capacitor boundary 14 mm
- Pin tip radial true position <=0.254 mm
N Pin count 478 each
Pdie Allowable pressure on the die for thermal solution - 689 kPa
W Package weight 4.5 g
Package Surface Flatness 0.286 mm
Intel® Pentium® M Processor Datasheet 43
Pac kage Mechani cal Specifications and Pin In form at io n
Fi gur e 8. Micro-FCBGA Package Top and Bot tom I sometric Views
TOP VIEW BOTTOM VIEW
LABEL DIE
PACKAGE KEEPOUT
CAPACITOR AREA
44 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
Fi gur e 9. Micro-FCBGA Package Top and Side Views
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Ta bl e 19 for details.
35 (E)
35 ( D)
PIN A1 CORNER
E1
D1
A
Ø 0.78 (b)
479 places
K2
SUBSTRATE KEEPOUT ZONE
DO NOT CONTACT PACKAGE
INSIDE THIS LINE
7 (K1)
8 places
5 (K)
4 pla ces A2
0.20
Intel® Pentium® M Processor Datasheet 45
Pac kage Mechani cal Specifications and Pin In form at io n
Table 19. Micro-FCBGA Package Dimensions
NOTE: Overall height as delivered. Values are based on design specifications and tolerances. This dimension
is subject to change based on OEM motherboard design or OEM SMT process.
Symbol Parameter Min Max Unit
A Overall height, as delivered (Refer to Note 1) 2.60 2.85 mm
A2 Die height 0.82 mm
b Ball diameter 0.78 mm
D Package substrate length 34.9 35.1 mm
E Package substrate width 34.9 35.1 mm
D1 Die length 10.56 mm
E1 Die width 7.84 mm
F To Package Substrate Center 17.5 mm
G Die Offset from Package Center 1.133 mm
e Ball pitch 1.27 mm
K Package edge keep-out 5 mm
K1 Package corner keep-out 7 mm
K2 Die-side capacitor height - 0.7 mm
S Package edge to first ball center 1.625 mm
N Ball count 479 each
- Solder ball coplanarity 0.2 mm
Pdie Allowable pressure on the die for thermal solution - 689 kPa
W Package weight 4.5 g
46 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
Figu re 10. M icro-FC BG A Package B ottom View
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Ta bl e 1 9 for details.
1 2 3 4 6 8 10 12 14 16 18 20 22 24 26
5 7 9 11 13 15 17 19 21 23 25
A
B C
E
D
F G
H J
K L
M N
P R
T U
V W
Y AA
AB AC
AD AE
AF
25X 1.27
(e)
25X 1.27
(e)
1.625 ( S)
4 plac es
1.625 ( S)
4 places
Intel® Pentium® M Processor Datasheet 47
Pac kage Mechani cal Specifications and Pin In form at io n
4.1 Pr ocessor Pin-Ou t an d Pin List
Figure 11 on the next page shows the top view pinout of the Intel Pentium M processor. The pin list
arranged in two different formats is shown in Table 19 and Table 20.
48 IIntel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
This page intentionally left blank.
Fi gur e 11. The Coo rd inates of the Processor Pins as Vie wed From the Top of t he Package
1234567891011121314151617181920212223242526
IGNNE# IERR# VSS SLP# DBR# VSS BPM[2]# PRDY# VSS TDO TCK VSS ITP_CLK
[1] ITP_CLK
[0] VSS THER
MDC D[0]# VSS D[6]# D[2]# VSS D[4]# D[1]# VSS
VSS SMI# INIT# VSS DPSLP# BPM
[1]# VSS PREQ# RESET# VSS TRST# BCLK1 BCLK0 VSS PROC
HOT# THER
MDA VSS D[7]# D[3]# VSS D[13]# D[9]# VSS D[5]#
VSS A20M# RSVD VSS TEST1 STP
CLK# VSS BPM
[0]# BPM
[3]# VSS TMS TDI VSS RSVD VSS TEST3 THERM
TRIP# VSS DPWR# D[8]# VSS DS TBP
[0]# DSTBN
[0]# VSS D[15]# D[12]#
LINT0 VSS FERR# LINT1 VSS VCC VSS VCC VSS VCCP VSS VCCP VSS VCCP VSS VCCP VSS VCC VSS VCC VSS VCC VSS D[ 10 ]# DINV
[0]# VSS
PSI# VID[0] PWR
GOOD VCC VSS VCC VSS VCC VSS VCCP VSS VCCP VSS VCCP VSS VCC VSS VCC VSS VCC VSS D[14]# D[11 ]# VSS RSVD
VSS VID[1] VID[2] VSS VSS VCC VSS VCC VSS VCCP VSS VCCP VSS VCCP VSS VCCP VSS VCC VSS VCC VSS VCC TEST2 VSS D[21]# VCCA[0]
RSVD VSS VID[3] VID[4] VCC VSS VCC VSS VSS D[22]# D[17]# VSS
RS[0]# DRDY# VSS VID[5] VSS VCC VSS VCC D[16 ]# D[20]# VSS D[29]#
VSS LOCK# BPRI# VSS VCC VSS VCC VSS D[23]# VSS D[25]# DINV
[1]#
RS[1]# VSS HIT# HITM# VSS VCCP VSS VCC VSS DS TBN
[1]# D[31]# VSS
BNR# RS[2]# VSS DEFER# VCCP VSS VCCP VSS D[18]# DSTBP
[1]# VSS D[26]#
DBSY# TRDY# VSS VSS VCCP VSS VCCP D[24 ]# VSS D[28]# D[19]#
VCCA[2] ADS# VSS BR0# VCCP VSS VCCP VSS VSS D[27]# D[30]# VSS
REQ
[3]# VSS REQ
[1]# A[3]# VSS VCCP VSS VCCP VCCQ[0] VSS COMP
[0] COMP
[1]
VSS REQ
[0]# A[6]# VSS VCCP VSS VCCP VSS D[39]# D[37 ]# VSS D[38]#
REQ
[4]# REQ
[2]# VSS A[9]# VSS VCCP VSS VCCP VSS DINV
[2]# D[34]# VSS
A[13 ]# VSS ADSTB
[0]# A[4]# VCC VSS VCCP VSS D[35 ]# VSS D[43]# D[41]#
VSS A[7]# A[5]# VSS VSS VCC VSS VCC D[36]# D[42 ]# VSS D[44]#
A[8]# A[10]# VSS VCCQ[1] VCC VSS VCC VSS VSS DSTBP
[2]# DSTBN
[2]# VSS
A[12 ]# VSS A[15]# VSS VCC VSS VCC D[45 ]# VSS D[47]# D[32]#
VSS A[16 ]# A[14]# VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS D[40]# D[33 ]# VSS D[46]#
COMP
[3] COMP
[2] VSS A[24]# VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS D[50]# D[48]# VSS
RSVD VSS A[20]# A[18]# VSS A[25]# A[19]# VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC D[51]# VSS D[52]# D[49]# VSS D[53]# VCCA[3]
VSS A[23 ]# A[21]# VSS A[26]# A[28]# VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS DINV
[3]# D[60]# VSS D[54]# D[57 ]# VSS GTLREF
A[30 ]# A[27]# VSS A[22]# ADSTB
[1]# VSS VCC
SENSE VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS D[59]# D[55]# VSS DS TBN
[3]# DSTBP
[3]# VSS
A[31]#
A[31 ]# VSS A[29]# A[17]# VSS VSS
SENSE RSVD VCC VSS VCC VSS VCC vss VCC VSS VCC VSS VCC VSS D[58]# VSS D[62]# D[56]# VSS D[61]# D[63]#
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
VSS
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
1234567891011121314151617181920212223242526
VSS VCC Other
VSS
A[11]#
VSS
TOP VIEW
VCCA[1]
Pin B2 is depopulated on the Micro-FCPGA package
RSVD
Pac kage Mechani cal Specifications and Pin In form at io n
Intel® Pentium® M Processor Datasheet 49
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
A[3]# P4 Source Synch Input/Output
A[4]# U4 Source Synch Input/Output
A[5]# V3 Source Synch Input/Output
A[6]# R3 Source Synch Input/Output
A[7]# V2 Source Synch Input/Output
A[8]# W1 Source Synch Input/Output
A[9]# T4 Source Synch Input/Output
A[10]# W2 Source Synch Input/Output
A[11]# Y4 Source Synch Input/Output
A[12]# Y1 Source Synch Input/Output
A[13]# U1 Source Synch Input/Output
A[14]# AA3 Source Synch Input/Output
A[15]# Y3 Source Synch Input/Output
A[16]# AA2 Source Synch Input/Output
A[17]# AF4 Source Synch Input/Output
A[18]# AC4 Source Synch Input/Output
A[19]# AC7 Source Synch Input/Output
A[20]# AC3 Source Synch Input/Output
A[21]# AD3 Source Synch Input/Output
A[22]# AE4 Source Synch Input/Output
A[23]# AD2 Source Synch Input/Output
A[24]# AB4 Source Synch Input/Output
A[25]# AC6 Source Synch Input/Output
A[26]# AD5 Source Synch Input/Output
A[27]# AE2 Source Synch Input/Output
A[28]# AD6 Source Synch Input/Output
A[29]# AF3 Source Synch Input/Output
A[30]# AE1 Source Synch Input/Output
A[31]# AF1 Source Synch Input/Output
A20M# C2 CMOS Input
ADS# N2 Common Clock Input/Output
ADSTB[0]# U3 Source Synch Input/Output
ADSTB[1]# AE5 Source Synch Input/Output
BCLK[0] B15 Bus Clock Input
BCLK[1] B14 Bus Clock Input
BNR# L1 Common Clock Input/Output
BPM[0]# C8 Common Clock Output
BPM[1]# B8 Common Clock Output
BPM[2]# A9 Common Clock Output
BPM[3]# C9 Common Clock Input/Output
BPRI# J3 Common Clock Input
BR0# N4 Common Clock Input/Output
COMP[0] P25 Power/Other Input/Output
COMP[1] P26 Power/Other Input/Output
COMP[2] AB2 Power/Other Input/Output
COMP[3] AB1 Power/Other Input/Output
D[0]# A19 Source Synch Input/Output
D[1]# A25 Source Synch Input/Output
D[2]# A22 Source Synch Input/Output
D[3]# B21 Source Synch Input/Output
D[4]# A24 Source Synch Input/Output
D[5]# B26 Source Synch Input/Output
D[6]# A21 Source Synch Input/Output
D[7]# B20 Source Synch Input/Output
D[8]# C20 Source Synch Input/Output
D[9]# B24 Source Synch Input/Output
D[10]# D24 Source Synch Input/Output
D[11]# E24 Source Synch Input/Output
D[12]# C26 Source Synch Input/Output
D[13]# B23 Source Synch Input/Output
D[14]# E23 Source Synch Input/Output
D[15]# C25 Source Synch Input/Output
D[16]# H23 Source Synch Input/Output
D[17]# G25 Source Synch Input/Output
D[18]# L23 Source Synch Input/Output
D[19]# M26 Source Synch Input/Output
D[20]# H24 Source Synch Input/Output
D[21]# F25 Source Synch Input/Output
D[22]# G24 Source Synch Input/Output
D[23]# J23 Source Synch Input/Output
D[24]# M23 Source Synch Input/Output
D[25]# J25 Source Synch Input/Output
D[26]# L26 Source Synch Input/Output
D[27]# N24 Source Synch Input/Output
D[28]# M25 Source Synch Input/Output
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
Packa ge M echanical Specifications and Pi n Infor ma t ion
50 Intel® Pentium® M Processor Datasheet
D[29]# H26 Source Synch Input/Output
D[30]# N25 Source Synch Input/Output
D[31]# K25 Source Synch Input/Output
D[32]# Y26 Source Synch Input/Output
D[33]# AA24 Source Synch Input/Output
D[34]# T25 Source Synch Input/Output
D[35]# U23 Source Synch Input/Output
D[36]# V23 Source Synch Input/Output
D[37]# R24 Source Synch Input/Output
D[38]# R26 Source Synch Input/Output
D[39]# R23 Source Synch Input/Output
D[40]# AA23 Source Synch Input/Output
D[41]# U26 Source Synch Input/Output
D[42]# V24 Source Synch Input/Output
D[43]# U25 Source Synch Input/Output
D[44]# V26 Source Synch Input/Output
D[45]# Y23 Source Synch Input/Output
D[46]# AA26 Source Synch Input/Output
D[47]# Y25 Source Synch Input/Output
D[48]# AB25 Source Synch Input/Output
D[49]# AC23 Source Synch Input/Output
D[50]# AB24 Source Synch Input/Output
D[51]# AC20 Source Synch Input/Output
D[52]# AC22 Source Synch Input/Output
D[53]# AC25 Source Synch Input/Output
D[54]# AD23 Source Synch Input/Output
D[55]# AE22 Source Synch Input/Output
D[56]# AF23 Source Synch Input/Output
D[57]# AD24 Source Synch Input/Output
D[58]# AF20 Source Synch Input/Output
D[59]# AE21 Source Synch Input/Output
D[60]# AD21 Source Synch Input/Output
D[61]# AF25 Source Synch Input/Output
D[62]# AF22 Source Synch Input/Output
D[63]# AF26 Source Synch Input/Output
DBR# A7 CMOS Output
DBSY# M2 Common Clock Input/Output
DEFER# L4 Common Clock Input
DINV[0]# D25 Source Synch Input/Output
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
DINV[1]# J26 Source Synch Input/Output
DINV[2]# T24 Source Synch Input/Output
DINV[3]# AD20 Source Synch Input/Output
DPSLP# B7 CMOS Input
DPWR# C19 Common Clock Input
DRDY# H2 Common Clock Input/Output
DSTBN[0]# C23 Source Synch Input/Output
DSTBN[1]# K24 Source Synch Input/Output
DSTBN[2]# W25 Source Synch Input/Output
DSTBN[3]# AE24 Source Synch Input/Output
DSTBP[0]# C22 Source Synch Input/Output
DSTBP[1]# L24 Source Synch Input/Output
DSTBP[2]# W24 Source Synch Input/Output
DSTBP[3]# AE25 Source Synch Input/Output
FERR# D3 Open Drain Output
GTLREF AD26 Power/Other Input
HIT# K3 Common Clock Input/Output
HITM# K4 Common Clock Input/Output
IERR# A4 Open Drain Output
IGNNE# A3 CMOS Input
INIT# B5 CMOS Input
ITP_CLK[0] A16 CMOS input
ITP_CLK[1] A15 CMOS input
LINT0 D1 CMOS Input
LINT1 D4 CMOS Input
LOCK# J2 Common Clock Input/Output
PRDY# A10 Common Clock Output
PREQ# B10 Common Clock Input
PROCHOT# B17 Open Drain Output
PSI# E1 CMOS Output
PWRGOOD E4 CMOS Input
REQ[0]# R2 Source Synch Input/Output
REQ[1]# P3 Source Synch Input/Output
REQ[2]# T2 Source Synch Input/Output
REQ[3]# P1 Source Synch Input/Output
REQ[4]# T1 Source Synch Input/Output
RESET# B11 Common Clock Input
RS[0]# H1 Common Clock Input
RS[1]# K1 Common Clock Input
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
Pac kage Mechani cal Specifications and Pin In form at io n
Intel® Pentium® M Processor Datasheet 51
RS[2]# L2 Common Clock Input
RSVD AF7 Reserved
RSVD B2 Reserved
RSVD C14 Reserved
RSVD C3 Reserved
RSVD E26 Reserved
RSVD G1 Reserved
RSVD AC1 Reserved
SLP# A6 CMOS Input
SMI# B4 CMOS Input
STPCLK# C6 CMOS Input
TCK A13 CMOS Input
TDI C12 CMOS Input
TDO A12 Open Drain Output
TEST1 C5 Test
TEST2 F23 Test
TEST3 C16 Test
THERMDA B18 Power/Other
THERMDC A18 Power/Other
THERMTRIP# C17 Open Drain Output
TMS C11 CMOS Input
TRDY# M3 Common Clock Input
TRST# B13 CMOS Input
VCC D6 Power/Other
VCC D8 Power/Other
VCC D18 Power/Other
VCC D20 Power/Other
VCC D22 Power/Other
VCC E5 Power/Other
VCC E7 Power/Other
VCC E9 Power/Other
VCC E17 Power/Other
VCC E19 Power/Other
VCC E21 Power/Other
VCC F6 Power/Other
VCC F8 Power/Other
VCC F18 Power/Other
VCC F20 Power/Other
VCC F22 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
VCC G5 Power/Other
VCC G21 Power/Other
VCC H6 Power/Other
VCC H22 Power/Other
VCC J5 Power/Other
VCC J21 Power/Other
VCC K22 Power/Other
VCC U5 Power/Other
VCC V6 Power/Other
VCC V22 Power/Other
VCC W5 Power/Other
VCC W21 Power/Other
VCC Y6 Power/Other
VCC Y22 Power/Other
VCC AA5 Power/Other
VCC AA7 Power/Other
VCC AA9 Power/Other
VCC AA11 Power/Other
VCC AA13 Power/Other
VCC AA15 Power/Other
VCC AA17 Power/Other
VCC AA19 Power/Other
VCC AA21 Power/Other
VCC AB6 Power/Other
VCC AB8 Power/Other
VCC AB10 Power/Other
VCC AB12 Power/Other
VCC AB14 Power/Other
VCC AB16 Power/Other
VCC AB18 Power/Other
VCC AB20 Power/Other
VCC AB22 Power/Other
VCC AC9 Power/Other
VCC AC11 Power/Other
VCC AC13 Power/Other
VCC AC15 Power/Other
VCC AC17 Power/Other
VCC AC19 Power/Other
VCC AD8 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
Packa ge M echanical Specifications and Pi n Infor ma t ion
52 Intel® Pentium® M Processor Datasheet
VCC AD10 Power/Other
VCC AD12 Power/Other
VCC AD14 Power/Other
VCC AD16 Power/Other
VCC AD18 Power/Other
VCC AE9 Power/Other
VCC AE11 Power/Other
VCC AE13 Power/Other
VCC AE15 Power/Other
VCC AE17 Power/Other
VCC AE19 Power/Other
VCC AF8 Power/Other
VCC AF10 Power/Other
VCC AF12 Power/Other
VCC AF14 Power/Other
VCC AF16 Power/Other
VCC AF18 Power/Other
VCCA[0] F26 Power/Other
VCCA[1] B1 Power/Other
VCCA[2] N1 Power/Other
VCCA[3] AC26 Power/Other
VCCP D10 Power/Other
VCCP D12 Power/Other
VCCP D14 Power/Other
VCCP D16 Power/Other
VCCP E11 Power/Other
VCCP E13 Power/Other
VCCP E15 Power/Other
VCCP F10 Power/Other
VCCP F12 Power/Other
VCCP F14 Power/Other
VCCP F16 Power/Other
VCCP K6 Power/Other
VCCP L5 Power/Other
VCCP L21 Power/Other
VCCP M6 Power/Other
VCCP M22 Power/Other
VCCP N5 Power/Other
VCCP N21 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
VCCP P6 Power/Other
VCCP P22 Power/Other
VCCP R5 Power/Other
VCCP R21 Power/Other
VCCP T6 Power/Other
VCCP T22 Power/Other
VCCP U21 Power/Other
VCCQ[0] P23 Power/Other
VCCQ[1] W4 Power/Other
VCCSENSE AE7 Power/Other Output
VID[0] E2 CMOS Output
VID[1] F2 CMOS Output
VID[2] F3 CMOS Output
VID[3] G3 CMOS Output
VID[4] G4 CMOS Output
VID[5] H4 CMOS Output
VSS A2 Power/Other
VSS A5 Power/Other
VSS A8 Power/Other
VSS A11 Power/Other
VSS A14 Power/Other
VSS A17 Power/Other
VSS A20 Power/Other
VSS A23 Power/Other
VSS A26 Power/Other
VSS B3 Power/Other
VSS B6 Power/Other
VSS B9 Power/Other
VSS B12 Power/Other
VSS B16 Power/Other
VSS B19 Power/Other
VSS B22 Power/Other
VSS B25 Power/Other
VSS C1 Power/Other
VSS C4 Power/Other
VSS C7 Power/Other
VSS C10 Power/Other
VSS C13 Power/Other
VSS C15 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
Pac kage Mechani cal Specifications and Pin In form at io n
Intel® Pentium® M Processor Datasheet 53
VSS C18 Power/Other
VSS C21 Power/Other
VSS C24 Power/Other
VSS D2 Power/Other
VSS D5 Power/Other
VSS D7 Power/Other
VSS D9 Power/Other
VSS D11 Power/Other
VSS D13 Power/Other
VSS D15 Power/Other
VSS D17 Power/Other
VSS D19 Power/Other
VSS D21 Power/Other
VSS D23 Power/Other
VSS D26 Power/Other
VSS E3 Power/Other
VSS E6 Power/Other
VSS E8 Power/Other
VSS E10 Power/Other
VSS E12 Power/Other
VSS E14 Power/Other
VSS E16 Power/Other
VSS E18 Power/Other
VSS E20 Power/Other
VSS E22 Power/Other
VSS E25 Power/Other
VSS F1 Power/Other
VSS F4 Power/Other
VSS F5 Power/Other
VSS F7 Power/Other
VSS F9 Power/Other
VSS F11 Power/Other
VSS F13 Power/Other
VSS F15 Power/Other
VSS F17 Power/Other
VSS F19 Power/Other
VSS F21 Power/Other
VSS F24 Power/Other
VSS G2 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
VSS G6 Power/Other
VSS G22 Power/Other
VSS G23 Power/Other
VSS G26 Power/Other
VSS H3 Power/Other
VSS H5 Power/Other
VSS H21 Power/Other
VSS H25 Power/Other
VSS J1 Power/Other
VSS J4 Power/Other
VSS J6 Power/Other
VSS J22 Power/Other
VSS J24 Power/Other
VSS K2 Power/Other
VSS K5 Power/Other
VSS K21 Power/Other
VSS K23 Power/Other
VSS K26 Power/Other
VSS L3 Power/Other
VSS L6 Power/Other
VSS L22 Power/Other
VSS L25 Power/Other
VSS M1 Power/Other
VSS M4 Power/Other
VSS M5 Power/Other
VSS M21 Power/Other
VSS M24 Power/Other
VSS N3 Power/Other
VSS N6 Power/Other
VSS N22 Power/Other
VSS N23 Power/Other
VSS N26 Power/Other
VSS P2 Power/Other
VSS P5 Power/Other
VSS P21 Power/Other
VSS P24 Power/Other
VSS R1 Power/Other
VSS R4 Power/Other
VSS R6 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
Packa ge M echanical Specifications and Pi n Infor ma t ion
54 Intel® Pentium® M Processor Datasheet
VSS R22 Power/Other
VSS R25 Power/Other
VSS T3 Power/Other
VSS T5 Power/Other
VSS T21 Power/Other
VSS T23 Power/Other
VSS T26 Power/Other
VSS U2 Power/Other
VSS U6 Power/Other
VSS U22 Power/Other
VSS U24 Power/Other
VSS V1 Power/Other
VSS V4 Power/Other
VSS V5 Power/Other
VSS V21 Power/Other
VSS V25 Power/Other
VSS W3 Power/Other
VSS W6 Power/Other
VSS W22 Power/Other
VSS W23 Power/Other
VSS W26 Power/Other
VSS Y2 Power/Other
VSS Y5 Power/Other
VSS Y21 Power/Other
VSS Y24 Power/Other
VSS AA1 Power/Other
VSS AA4 Power/Other
VSS AA6 Power/Other
VSS AA8 Power/Other
VSS AA10 Power/Other
VSS AA12 Power/Other
VSS AA14 Power/Other
VSS AA16 Power/Other
VSS AA18 Power/Other
VSS AA20 Power/Other
VSS AA22 Power/Other
VSS AA25 Power/Other
VSS AB3 Power/Other
VSS AB5 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
VSS AB7 Power/Other
VSS AB9 Power/Other
VSS AB11 Power/Other
VSS AB13 Power/Other
VSS AB15 Power/Other
VSS AB17 Power/Other
VSS AB19 Power/Other
VSS AB21 Power/Other
VSS AB23 Power/Other
VSS AB26 Power/Other
VSS AC2 Power/Other
VSS AC5 Power/Other
VSS AC8 Power/Other
VSS AC10 Power/Other
VSS AC12 Power/Other
VSS AC14 Power/Other
VSS AC16 Power/Other
VSS AC18 Power/Other
VSS AC21 Power/Other
VSS AC24 Power/Other
VSS AD1 Power/Other
VSS AD4 Power/Other
VSS AD7 Power/Other
VSS AD9 Power/Other
VSS AD11 Power/Other
VSS AD13 Power/Other
VSS AD15 Power/Other
VSS AD17 Power/Other
VSS AD19 Power/Other
VSS AD22 Power/Other
VSS AD25 Power/Other
VSS AE3 Power/Other
VSS AE6 Power/Other
VSS AE8 Power/Other
VSS AE10 Power/Other
VSS AE12 Power/Other
VSS AE14 Power/Other
VSS AE16 Power/Other
VSS AE18 Power/Other
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
Pac kage Mechani cal Specifications and Pin In form at io n
Intel® Pentium® M Processor Datasheet 55
VSS AE20 Power/Other
VSS AE23 Power/Other
VSS AE26 Power/Other
VSS AF2 Power/Other
VSS AF5 Power/Other
VSS AF9 Power/Other
VSS AF11 Power/Other
VSS AF13 Power/Other
VSS AF15 Power/Other
VSS AF17 Power/Other
VSS AF19 Power/Other
VSS AF21 Power/Other
VSS AF24 Power/Other
VSSSENSE AF6 Power/Other Output
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
A2 VSS Power/Other
A3 IGNNE# CMOS Input
A4 IERR# Open Drain Output
A5 VSS Power/Other
A6 SLP# CMOS Input
A7 DBR# CMOS Output
A8 VSS Power/Other
A9 BPM[2]# Common Clock Output
A10 PRDY# Common Clock Output
A11 VSS Power/Other
A12 TDO Open Drain Output
A13 TCK CMOS Input
A14 VSS Power/Other
A15 ITP_CLK[1] CMOS input
A16 ITP_CLK[0] CMOS input
A17 VSS Power/Other
A18 THERMDC Power/Other
A19 D[0]# Source Synch Input/Output
A20 VSS Power/Other
A21 D[6]# Source Synch Input/Output
A22 D[2]# Source Synch Input/Output
Table 20. Pin Listing by Pin Nam e
Pin Name Pin
Number Signal Buf fer
Type Direction
A23 VSS Power/Other
A24 D[4]# Source Synch Input/Output
A25 D[1]# Source Synch Input/Output
A26 VSS Power/Other
AA1 VSS Power/Other
AA2 A[16]# Source Synch Input/Output
AA3 A[14]# Source Synch Input/Output
AA4 VSS Power/Other
AA5 VCC Power/Other
AA6 VSS Power/Other
AA7 VCC Power/Other
AA8 VSS Power/Other
AA9 VCC Power/Other
AA10 VSS Power/Other
AA11 VCC Power/Other
AA12 VSS Power/Other
AA13 VCC Power/Other
AA14 VSS Power/Other
AA15 VCC Power/Other
AA16 VSS Power/Other
AA17 VCC Power/Other
AA18 VSS Power/Other
AA19 VCC Power/Other
AA20 VSS Power/Other
AA21 VCC Power/Other
AA22 VSS Power/Other
AA23 D[40]# Source Synch Input/Output
AA24 D[33]# Source Synch Input/Output
AA25 VSS Power/Other
AA26 D[46]# Source Synch Input/Output
AB1 COMP[3] Power/Other Input/Output
AB2 COMP[2] Power/Other Input/Output
AB3 VSS Power/Other
AB4 A[24]# Source Synch Input/Output
AB5 VSS Power/Other
AB6 VCC Power/Other
AB7 VSS Power/Other
AB8 VCC Power/Other
AB9 VSS Power/Other
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
Packa ge M echanical Specifications and Pi n Infor ma t ion
56 Intel® Pentium® M Processor Datasheet
AB10 VCC Power/Other
AB11 VSS Power/Other
AB12 VCC Power/Other
AB13 VSS Power/Other
AB14 VCC Power/Other
AB15 VSS Power/Other
AB16 VCC Power/Other
AB17 VSS Power/Other
AB18 VCC Power/Other
AB19 VSS Power/Other
AB20 VCC Power/Other
AB21 VSS Power/Other
AB22 VCC Power/Other
AB23 VSS Power/Other
AB24 D[50]# Source Synch Input/Output
AB25 D[48]# Source Synch Input/Output
AB26 VSS Power/Other
AC1 RSVD Reserved
AC2 VSS Power/Other
AC3 A[20]# Source Synch Input/Output
AC4 A[18]# Source Synch Input/Output
AC5 VSS Power/Other
AC6 A[25]# Source Synch Input/Output
AC7 A[19]# Source Synch Input/Output
AC8 VSS Power/Other
AC9 VCC Power/Other
AC10 VSS Power/Other
AC11 VCC Power/Other
AC12 VSS Power/Other
AC13 VCC Power/Other
AC14 VSS Power/Other
AC15 VCC Power/Other
AC16 VSS Power/Other
AC17 VCC Power/Other
AC18 VSS Power/Other
AC19 VCC Power/Other
AC20 D[51]# Source Synch Input/Output
AC21 VSS Power/Other
AC22 D[52]# Source Synch Input/Output
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
AC23 D[49]# Source Synch Input/Output
AC24 VSS Power/Other
AC25 D[53]# Source Synch Input/Output
AC26 VCCA[3] Power/Other
AD1 VSS Power/Other
AD2 A[23]# Source Synch Input/Output
AD3 A[21]# Source Synch Input/Output
AD4 VSS Power/Other
AD5 A[26]# Source Synch Input/Output
AD6 A[28]# Source Synch Input/Output
AD7 VSS Power/Other
AD8 VCC Power/Other
AD9 VSS Power/Other
AD10 VCC Power/Other
AD11 VSS Power/Other
AD12 VCC Power/Other
AD13 VSS Power/Other
AD14 VCC Power/Other
AD15 VSS Power/Other
AD16 VCC Power/Other
AD17 VSS Power/Other
AD18 VCC Power/Other
AD19 VSS Power/Other
AD20 DINV[3]# Source Synch Input/Output
AD21 D[60]# Source Synch Input/Output
AD22 VSS Power/Other
AD23 D[54]# Source Synch Input/Output
AD24 D[57]# Source Synch Input/Output
AD25 VSS Power/Other
AD26 GTLREF Power/Other
AE1 A[30]# Source Synch Input/Output
AE2 A[27]# Source Synch Input/Output
AE3 VSS Power/Other
AE4 A[22]# Source Synch Input/Output
AE5 ADSTB[1]# Source Synch Input/Output
AE6 VSS Power/Other
AE7 VCCSENSE Power/Other Output
AE8 VSS Power/Other
AE9 VCC Power/Other
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
Pac kage Mechani cal Specifications and Pin In form at io n
Intel® Pentium® M Processor Datasheet 57
AE10 VSS Power/Other
AE11 VCC Power/Other
AE12 VSS Power/Other
AE13 VCC Power/Other
AE14 VSS Power/Other
AE15 VCC Power/Other
AE16 VSS Power/Other
AE17 VCC Power/Other
AE18 VSS Power/Other
AE19 VCC Power/Other
AE20 VSS Power/Other
AE21 D[59]# Source Synch Input/Output
AE22 D[55]# Source Synch Input/Output
AE23 VSS Power/Other
AE24 DSTBN[3]# Source Synch Input/Output
AE25 DSTBP[3]# Source Synch Input/Output
AE26 VSS Power/Other
AF1 A[31]# Source Synch Input/Output
AF2 VSS Power/Other
AF3 A[29]# Source Synch Input/Output
AF4 A[17]# Source Synch Input/Output
AF5 VSS Power/Other
AF6 VSSSENSE Power/Other Output
AF7 RSVD Reserved
AF8 VCC Power/Other
AF9 VSS Power/Other
AF10 VCC Power/Other
AF11 VSS Power/Other
AF12 VCC Power/Other
AF13 VSS Power/Other
AF14 VCC Power/Other
AF15 VSS Power/Other
AF16 VCC Power/Other
AF17 VSS Power/Other
AF18 VCC Power/Other
AF19 VSS Power/Other
AF20 D[58]# Source Synch Input/Output
AF21 VSS Power/Other
AF22 D[62]# Source Synch Input/Output
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
AF23 D[56]# Source Synch Input/Output
AF24 VSS Power/Other
AF25 D[61]# Source Synch Input/Output
AF26 D[63]# Source Synch Input/Output
B1 VCCA[1] Power/Other
B2 RSVD Reserved
B3 VSS Power/Other
B4 SMI# CMOS Input
B5 INIT# CMOS Input
B6 VSS Power/Other
B7 DPSLP# CMOS Input
B8 BPM[1]# Common Clock Output
B9 VSS Power/Other
B10 PREQ# Common Clock Input
B11 RESET# Common Clock Input
B12 VSS Power/Other
B13 TRST# CMOS Input
B14 BCLK[1] Bus Clock Input
B15 BCLK[0] Bus Clock Input
B16 VSS Power/Other
B17 PROCHOT# Open Drain Output
B18 THERMDA Power/Other
B19 VSS Power/Other
B20 D[7]# Source Synch Input/Output
B21 D[3]# Source Synch Input/Output
B22 VSS Power/Other
B23 D[13]# Source Synch Input/Output
B24 D[9]# Source Synch Input/Output
B25 VSS Power/Other
B26 D[5]# Source Synch Input/Output
C1 VSS Power/Other
C2 A20M# CMOS Input
C3 RSVD Reserved
C4 VSS Power/Other
C5 TEST1 Test
C6 STPCLK# CMOS Input
C7 VSS Power/Other
C8 BPM[0]# Common Clock Output
C9 BPM[3]# Common Clock Input/Output
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
Packa ge M echanical Specifications and Pi n Infor ma t ion
58 Intel® Pentium® M Processor Datasheet
C10 VSS Power/Other
C11 TMS CMOS Input
C12 TDI CMOS Input
C13 VSS Power/Other
C14 RSVD Reserved
C15 VSS Power/Other
C16 TEST3 Test
C17 THERMTRIP# Open Drain Output
C18 VSS Power/Other
C19 DPWR# Common Clock Input
C20 D[8]# Source Synch Input/Output
C21 VSS Power/Other
C22 DSTBP[0]# Source Synch Input/Output
C23 DSTBN[0]# Source Synch Input/Output
C24 VSS Power/Other
C25 D[15]# Source Synch Input/Output
C26 D[12]# Source Synch Input/Output
D1 LINT0 CMOS Input
D2 VSS Power/Other
D3 FERR# Open Drain Output
D4 LINT1 CMOS Input
D5 VSS Power/Other
D6 VCC Power/Other
D7 VSS Power/Other
D8 VCC Power/Other
D9 VSS Power/Other
D10 VCCP Power/Other
D11 VSS Power/Other
D12 VCCP Power/Other
D13 VSS Power/Other
D14 VCCP Power/Other
D15 VSS Power/Other
D16 VCCP Power/Other
D17 VSS Power/Other
D18 VCC Power/Other
D19 VSS Power/Other
D20 VCC Power/Other
D21 VSS Power/Other
D22 VCC Power/Other
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
D23 VSS Power/Other
D24 D[10]# Source Synch Input/Output
D25 DINV[0]# Source Synch Input/Output
D26 VSS Power/Other
E1 PSI# CMOS Output
E2 VID[0] CMOS Output
E3 VSS Power/Other
E4 PWRGOOD CMOS Input
E5 VCC Power/Other
E6 VSS Power/Other
E7 VCC Power/Other
E8 VSS Power/Other
E9 VCC Power/Other
E10 VSS Power/Other
E11 VCCP Power/Other
E12 VSS Power/Other
E13 VCCP Power/Other
E14 VSS Power/Other
E15 VCCP Power/Other
E16 VSS Power/Other
E17 VCC Power/Other
E18 VSS Power/Other
E19 VCC Power/Other
E20 VSS Power/Other
E21 VCC Power/Other
E22 VSS Power/Other
E23 D[14]# Source Synch Input/Output
E24 D[11]# Source Synch Input/Output
E25 VSS Power/Other
E26 RSVD Reserved
F1 VSS Power/Other
F2 VID[1] CMOS Output
F3 VID[2] CMOS Output
F4 VSS Power/Other
F5 VSS Power/Other
F6 VCC Power/Other
F7 VSS Power/Other
F8 VCC Power/Other
F9 VSS Power/Other
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
Pac kage Mechani cal Specifications and Pin In form at io n
Intel® Pentium® M Processor Datasheet 59
F10 VCCP Power/Other
F11 VSS Power/Other
F12 VCCP Power/Other
F13 VSS Power/Other
F14 VCCP Power/Other
F15 VSS Power/Other
F16 VCCP Power/Other
F17 VSS Power/Other
F18 VCC Power/Other
F19 VSS Power/Other
F20 VCC Power/Other
F21 VSS Power/Other
F22 VCC Power/Other
F23 TEST2 Test
F24 VSS Power/Other
F25 D[21]# Source Synch Input/Output
F26 VCCA[0] Power/Other
G1 RSVD Reserved
G2 VSS Power/Other
G3 VID[3] CMOS Output
G4 VID[4] CMOS Output
G5 VCC Power/Other
G6 VSS Power/Other
G21 VCC Power/Other
G22 VSS Power/Other
G23 VSS Power/Other
G24 D[22]# Source Synch Input/Output
G25 D[17]# Source Synch Input/Output
G26 VSS Power/Other
H1 RS[0]# Common Clock Input
H2 DRDY# Common Clock Input/Output
H3 VSS Power/Other
H4 VID[5] CMOS Output
H5 VSS Power/Other
H6 VCC Power/Other
H21 VSS Power/Other
H22 VCC Power/Other
H23 D[16]# Source Synch Input/Output
H24 D[20]# Source Synch Input/Output
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
H25 VSS Power/Other
H26 D[29]# Source Synch Input/Output
J1 VSS Power/Other
J2 LOCK# Common Clock Input/Output
J3 BPRI# Common Clock Input
J4 VSS Power/Other
J5 VCC Power/Other
J6 VSS Power/Other
J21 VCC Power/Other
J22 VSS Power/Other
J23 D[23]# Source Synch Input/Output
J24 VSS Power/Other
J25 D[25]# Source Synch Input/Output
J26 DINV[1]# Source Synch Input/Output
K1 RS[1]# Common Clock Input
K2 VSS Power/Other
K3 HIT# Common Clock Input/Output
K4 HITM# Common Clock Input/Output
K5 VSS Power/Other
K6 VCCP Power/Other
K21 VSS Power/Other
K22 VCC Power/Other
K23 VSS Power/Other
K24 DSTBN[1]# Source Synch Input/Output
K25 D[31]# Source Synch Input/Output
K26 VSS Power/Other
L1 BNR# Common Clock Input/Output
L2 RS[2]# Common Clock Input
L3 VSS Power/Other
L4 DEFER# Common Clock Input
L5 VCCP Power/Other
L6 VSS Power/Other
L21 VCCP Power/Other
L22 VSS Power/Other
L23 D[18]# Source Synch Input/Output
L24 DSTBP[1]# Source Synch Input/Output
L25 VSS Power/Other
L26 D[26]# Source Synch Input/Output
M1 VSS Power/Other
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
Packa ge M echanical Specifications and Pi n Infor ma t ion
60 Intel® Pentium® M Processor Datasheet
M2 DBSY# Common Clock Input/Output
M3 TRDY# Common Clock Input
M4 VSS Power/Other
M5 VSS Power/Other
M6 VCCP Power/Other
M21 VSS Power/Other
M22 VCCP Power/Other
M23 D[24]# Source Synch Input/Output
M24 VSS Power/Other
M25 D[28]# Source Synch Input/Output
M26 D[19]# Source Synch Input/Output
N1 VCCA[2] Power/Other
N2 ADS# Common Clock Input/Output
N3 VSS Power/Other
N4 BR0# Common Clock Input/Output
N5 VCCP Power/Other
N6 VSS Power/Other
N21 VCCP Power/Other
N22 VSS Power/Other
N23 VSS Power/Other
N24 D[27]# Source Synch Input/Output
N25 D[30]# Source Synch Input/Output
N26 VSS Power/Other
P1 REQ[3]# Source Synch Input/Output
P2 VSS Power/Other
P3 REQ[1]# Source Synch Input/Output
P4 A[3]# Source Synch Input/Output
P5 VSS Power/Other
P6 VCCP Power/Other
P21 VSS Power/Other
P22 VCCP Power/Other
P23 VCCQ[0] Power/Other
P24 VSS Power/Other
P25 COMP[0] Power/Other Input/Output
P26 COMP[1] Power/Other Input/Output
R1 VSS Power/Other
R2 REQ[0]# Source Synch Input/Output
R3 A[6]# Source Synch Input/Output
R4 VSS Power/Other
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
R5 VCCP Power/Other
R6 VSS Power/Other
R21 VCCP Power/Other
R22 VSS Power/Other
R23 D[39]# Source Synch Input/Output
R24 D[37]# Source Synch Input/Output
R25 VSS Power/Other
R26 D[38]# Source Synch Input/Output
T1 REQ[4]# Source Synch Input/Output
T2 REQ[2]# Source Synch Input/Output
T3 VSS Power/Other
T4 A[9]# Source Synch Input/Output
T5 VSS Power/Other
T6 VCCP Power/Other
T21 VSS Power/Other
T22 VCCP Power/Other
T23 VSS Power/Other
T24 DINV[2]# CMOS Input/Output
T25 D[34]# Source Synch Input/Output
T26 VSS Power/Other
U1 A[13]# Source Synch Input/Output
U2 VSS Power/Other
U3 ADSTB[0]# Source Synch Input/Output
U4 A[4]# Source Synch Input/Output
U5 VCC Power/Other
U6 VSS Power/Other
U21 VCCP Power/Other
U22 VSS Power/Other
U23 D[35]# Source Synch Input/Output
U24 VSS Power/Other
U25 D[43]# Source Synch Input/Output
U26 D[41]# Source Synch Input/Output
V1 VSS Power/Other
V2 A[7]# Source Synch Input/Output
V3 A[5]# Source Synch Input/Output
V4 VSS Power/Other
V5 VSS Power/Other
V6 VCC Power/Other
V21 VSS Power/Other
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
Pac kage Mechani cal Specifications and Pin In form at io n
Intel® Pentium® M Processor Datasheet 61
V22 VCC Power/Other
V23 D[36]# Source Synch Input/Output
V24 D[42]# Source Synch Input/Output
V25 VSS Power/Other
V26 D[44]# Source Synch Input/Output
W1 A[8]# Source Synch Input/Output
W2 A[10]# Source Synch Input/Output
W3 VSS Power/Other
W4 VCCQ[1] Power/Other
W5 VCC Power/Other
W6 VSS Power/Other
W21 VCC Power/Other
W22 VSS Power/Other
W23 VSS Power/Other
W24 DSTBP[2]# Source Synch Input/Output
W25 DSTBN[2]# Source Synch Input/Output
W26 VSS Power/Other
Y1 A[12]# Source Synch Input/Output
Y2 VSS Power/Other
Y3 A[15]# Source Synch Input/Output
Y4 A[11]# Source Synch Input/Output
Y5 VSS Power/Other
Y6 VCC Power/Other
Y21 VSS Power/Other
Y22 VCC Power/Other
Y23 D[45]# Source Synch Input/Output
Y24 VSS Power/Other
Y25 D[47]# Source Synch Input/Output
Y26 D[32]# Source Synch Input/Output
Table 21. Pin Listing by Pin Num ber
Pin
Number Pin Name S ignal Buf fer
Type Direction
62 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
4.2 Alphabetical Signals Reference
Table 22. Si gnal Description (Sheet 1 of 7)
Name Type Description
A[31:3]# Input/
Output
A[31:3]# (Address) define a 232-byte physical memory address space. In sub-
phase 1 of the address phase, these pins transmit the address of a transaction.
In sub-phase 2, these pins transmit transaction type information. These signals
must connect the appropriate pins of both agents on the Intel Pentium M
processor system bus. A[31:3]# are source synchronous signals and are latched
into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps
which are sampled before RESET# is deasserted.
A20M# Input
If A20M# (Address-20 Mask) is asserted, the processor masks physical address
bit 20 (A20#) before looking up a line in any internal cache and before driving a
read/write transaction on the bus. Asserting A20M# emulates the 8086
processor's address wrap-around at the 1-Mbyte boundary. Assertion of A20M#
is only supported in real mode.
A20M# is an asynchronous signal. However, to ensure recognition of this signal
following an Input/Output write instruction, it must be valid along with the TRDY#
assertion of the corresponding Input/Output Write bus transaction.
ADS# Input/
Output
ADS# (Address Strobe) is asserted to indicate the validity of the transaction
address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS#
activation to begin parity checking, protocol checking, address decode, internal
snoop, or deferred reply ID match operations associated with the new
transaction.
ADSTB[1:0]# Input/
Output
Address strobes are used to latch A[31:3]# and REQ[4:0]# on their rising and
falling edges. Strobes are associated with signals as shown below.
BCLK[1:0] Input
The differential pair BCLK (Bus Clock) determines the system bus frequency. All
processor system bus agents must receive these signals to drive their outputs
and latch their inputs.
BNR# Input/
Output
BNR# (Block Next Request) is used to assert a bus stall by any bus agent that is
unable to accept new bus transactions. During a bus stall, the current bus owner
cannot issue any new transactions.
BPM[2:0]#
BPM[3]
Output
Input/
Output
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor
signals. They are outputs from the processor that indicate the status of
breakpoints and programmable counters used for monitoring processor
performance. BPM[3:0]# should connect the appropriate pins of all Intel Pentium
M processor system bus agents.This includes debug or performance monitoring
tools.
Please refer to the platform design guides and I TP 700 Debug P ort Design Guide
for more detailed information.
BPRI# Input
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor
system bus. It must connect the appropriate pins of both processor system bus
agents. Observing BPRI# active (as asserted by the priority agent) causes the
other agent to stop issuing new requests, unless such requests are part of an
ongoing locked operation. The priority agent keeps BPRI# asserted until all of its
requests are completed, then releases the bus by deasserting BPRI#.
BR0# Input/
Output
BR0# is used by the processor to request the bus. The arbitration is done
between the Intel Pentium M processor (Symmetric Agent) and the MCH-M
(High Priority Agent) of the Intel 855PM or Intel 855GM chipset.
S ign als Asso ciated S trob e
REQ[4:0]#, A[16:3]# ADSTB[0]#
A[31:17]# ADSTB[1]#
Intel® Pentium® M Processor Datasheet 63
Pac kage Mechani cal Specifications and Pin In form at io n
COMP[3:0] Analog
COMP[3:0] must be terminated on the system board using precision (1%
tolerance) resistors. Refer to the platform design guides for more implementation
details.
D[63:0]# Input/
Output
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path
between the processor system bus agents, and must connect the appropriate
pins on both agents. The data driver asserts DRDY# to indicate a valid data
transfer.
D[63:0]# are quad-pumped signals and will thus be driven four times in a
common clock period. D[63:0]# are latched off the falling edge of both
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a
pair of one DSTBP# and one DSTBN#. The following table shows the grouping
of data signals to data strobes and DINV#.
Furthermore, the DINV# pins determine the polarity of the data signals. Each
group of 16 data signals corresponds to one DINV# signal. When the DINV#
signal is active, the corresponding data group is inverted and therefore sampled
active high.
DBR# Output
DBR# (Data Bus Reset) is used only in processor systems where no debug port
is implemented on the system board. DBR# is used by a debug port interposer
so that an in-target probe can drive system reset. If a debug port is implemented
in the system, DBR# is a no connect. DBR# is not a processor signal.
DBSY# Input/
Output
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on
the processor system bus to indicate that the data bus is in use. The data bus is
released after DBSY# is deasserted. This signal must connect the appropriate
pins on both processor system bus agents.
DEFER# Input
DEFER# is asserted by an agent to indicate that a transaction cannot be
guaranteed in-order completion. Assertion of DEFER# is normally the
responsibility of the addressed memory or Input/Output agent. This signal must
connect the appropriate pins of both processor system bus agents.
DINV[3:0]# Input/
Output
DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the
polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the
data on the data bus is inverted. The bus agent will invert the data bus signals if
more than half the bits, within the covered group, would change level in the next
cycle.
Table 22. Si gnal Description (Sheet 2 of 7)
Name Type Description
Quad-Pumped Signal Groups
Data Group DSTBN#/
DSTBP# DINV#
D[15:0]# 0 0
D[31:16]# 1 1
D[47:32]# 2 2
D[63:48]# 3 3
DINV[3:0]# Assignment To Data Bus
Bus Signal Data Bus S i gnals
DINV[3]# D[63:48]#
DINV[2]# D[47:32]#
DINV[1]# D[31:16]#
DINV[0]# D[15:0]#
64 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
DPSLP# Input
DPSLP# when asserted on the platform causes the processor to transition from
the Sleep state to the Deep Sleep state. In order to return to the Sleep state,
DPSLP# must be deasserted. DPSLP# is driven by the ICH4-M component and
also connects to the MCH-M component of the Intel 855PM or Intel 855GM
chipset.
DPWR# Input DPWR# is a control signal from the Intel 855PM and Intel 855GM chipsets used
to reduce power on the Intel Pentium M data bus input buffers.
DRDY# Input/
Output
DRDY# (Data Ready) is asserted by the data driver on each data transfer,
indicating valid data on the data bus. In a multi-common clock data transfer,
DRDY# may be deasserted to insert idle clocks. This signal must connect the
appropriate pins of both processor system bus agents.
DSTBN[3:0]# Input/
Output
Data strobe used to latch in D[63:0]#.
DSTBP[3:0]# Input/
Output
Data strobe used to latch in D[63:0]#.
FERR#/PBE# Output
FERR# (Floating-point Error)/PBE#(Pending Break Event) is a multiplexed
signal and its meaning is qualified by STPCLK#. When STPCLK# is not
asserted, FERR#/PBE# indicates a floating point when the processor detects an
unmasked floating-point error. FERR# is similar to the ERROR# signal on the
Intel 80387 coprocessor, and is included for compatibility with systems using
MS-DOS* type floating-point error reporting. When STPCLK# is asserted, an
assertion of FERR#/PBE# indicates that the processor has a pending break
event waiting for service. The assertion of FERR#/PBE# indicates that the
processor should be returned to the Normal state. When FERR#/PBE# is
asserted, indicating a break event, it will remain asserted until STPCLK# is
deasserted. Assertion of PREQ# when STPCLK# is active will also cause an
FERR# break event. For additional information on the pending break event
functionality, including identification of support for the feature and enable/disable
information, refer to Volume 3 of the Intel Archite cture Software Developer’s
Manual and the Intel P rocessor Identi fic ation and CPU ID I nstruct ion
application note.
For termination requirements please refer to the platform design guides.
GTLREF Input
GTLREF determines the signal reference level for AGTL+ input pins. GTLREF
should be set at 2/3 VCCP. GTLREF is used by the AGTL+ receivers to determine
if a signal is a logical 0 or logical 1. Please refer to the platform design guides for
details on GTLREF implementation.
Table 22. Si gnal Description (Sheet 3 of 7)
Name Type Description
S ign als Asso ciated S trob e
D[15:0]#, DINV[0]# DSTBN[0]#
D[31:16]#, DINV[1]# DSTBN[1]#
D[47:32]#, DINV[2]# DSTBN[2]#
D[63:48]#, DINV[3]# DSTBN[3]#
S ign als Asso ciated S trob e
D[15:0]#, DINV[0]# DSTBP[0]#
D[31:16]#, DINV[1]# DSTBP[1]#
D[47:32]#, DINV[2]# DSTBP[2]#
D[63:48]#, DINV[3]# DSTBP[3]#
Intel® Pentium® M Processor Datasheet 65
Pac kage Mechani cal Specifications and Pin In form at io n
HIT#
HITM#
Input/
Output
Input/
Output
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation
results. Either system bus agent may assert both HIT# and HITM# together to
indicate that it requires a snoop stall, which can be continued by reasserting
HIT# and HITM# together.
IERR# Output
IERR# (Internal Error) is asserted by a processor as the result of an internal
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction
on the processor system bus. This transaction may optionally be converted to an
external error signal (e.g., NMI) by system core logic. The processor will keep
IERR# asserted until the assertion of RESET#, BINIT#, or INIT#.
For termination requirements please refer to the platform design guides.
IGNNE# Input
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a
numeric error and continue to execute noncontrol floating-point instructions. If
IGNNE# is deasserted, the processor generates an exception on a noncontrol
floating-point instruction if a previous floating-point instruction caused an error.
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal
following an Input/Output write instruction, it must be valid along with the TRDY#
assertion of the corresponding Input/Output Write bus transaction.
INIT# Input
INIT# (Initialization), when asserted, resets integer registers inside the processor
without affecting its internal caches or floating-point registers. The processor
then begins execution at the power on Reset vector configured during power on
configuration. The processor continues to handle snoop requests during INIT#
assertion. INIT# is an asynchronous signal. However, to ensure recognition of
this signal following an Input/Output Write instruction, it must be valid along with
the TRDY# assertion of the corresponding Input/Output Write bus transaction.
INIT# must connect the appropriate pins of both processor system bus agents.
If INIT# is sampled active on the active to inactive transition of RESET#, then the
processor executes its Built-in Self-Test (BIST)
For termination requirements please refer to the platform design guides.
ITP_CLK[1:0] Input
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems
where no debug port is implemented on the system board. ITP_CLK[1:0] are
used as BCLK[1:0] references for a debug port implemented on an interposer. If
a debug port is implemented in the system, ITP_CLK[1:0] are no connects.
These are not processor signals.
LINT[1:0] Input
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC
Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a
maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable
interrupt. INTR and NMI are backward compatible with the signals of those
names on the Pentium processor. Both signals are asynchronous.
Both of these signals must be software configured using BIOS programming of
the APIC register space and used either as NMI/INTR or LINT[1:0]. Because the
APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is
the default configuration.
LOCK# Input/
Output
LOCK# indicates to the system that a transaction must occur atomically. This
signal must connect the appropriate pins of both processor system bus agents.
For a locked sequence of transactions, LOCK# is asserted from the beginning of
the first transaction to the end of the last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of the
processor system bus, it will wait until it observes LOCK# deasserted. This
enables symmetric agents to retain ownership of the processor system bus
throughout the bus locked operation and ensure the atomicity of lock.
Table 22. Si gnal Description (Sheet 4 of 7)
Name Type Description
66 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
PRDY# Output
Probe Ready signal used by debug tools to determine processor debug
readiness.
Please refer to the ITP700 Debug Port Design Guide and the platform design
guides for more implementation details.
PREQ# Input
Probe Request signal used by debug tools to request debug operation of the
processor.
Please refer to the ITP700 Debug Port Design Guide and the platform design
guides for more implementation details.
PROCHOT# Output
PROCHOT# (Processor Hot) will go active when the processor temperature
monitoring sensor detects that the processor has reached its maximum safe
operating temperature. This indicates that the processor Thermal Control Circuit
has been activated, if enabled. See Chapter 5 for more details.
For termination requirements please refer to the platform design guides.
This signal may require voltage translation on the motherboard. Please refer to
the platform design guides for more details.
PSI# Output
Processor Power Status Indicator signal. This signal is asserted when the
processor is in a lower state (Deep Sleep and Deeper Sleep). See Section 2.1.3
for more details.
PWRGOOD Input
PWRGOOD (Power Good) is a processor input. The processor requires this
signal as a clean indication that the clocks and power supplies are stable and
within their specifications.Clean’ implies that the signal will remain low (capable
of sinking leakage current), without glitches, from the time that the power
supplies are turned on until they come within specification. The signal must then
transition monotonically to a high state. PWRGOOD can be driven inactive at
any time, but clocks and power must again be stable before a subsequent rising
edge of PWRGOOD.
The PWRGOOD signal must be supplied to the processor; it is used to protect
internal circuits against voltage sequencing issues. It should be driven high
throughout the boundary scan operation.
For termination requirements please refer to the platform design guides.
REQ[4:0]# Input/
Output
REQ[4:0]# (Request Command) must connect the appropriate pins of both
processor system bus agents. They are asserted by the current bus owner to
define the currently active transaction type. These signals are source
synchronous to ADSTB[0]#.
RESET# Input
Asserting the RESET# signal resets the processor to a known state and
invalidates its internal caches without writing back any of their contents. For a
power-on Reset, RESET# must stay active for at least two milliseconds after
VCC and BCLK have reached their proper specifications. On observing active
RESET#, both system bus agents will deassert their outputs within two clocks.
All processor straps must be valid within the specified setup time before
RESET# is deasserted.
Please refer to the ITP700 Debug Port Design Guide and the platform design
guides for termination requirements and implementation details. There is a 55
ohm (nominal) on die pullup resistor on this signal.
RS[2:0]# Input
RS[2:0]# (Response Status) are driven by the response agent (the agent
responsible for completion of the current transaction), and must connect the
appropriate pins of both processor system bus agents.
RSVD
Reserved/
No
Connect
These pins are RESERVED and must be left unconnected on the board.
However, it is recommended that routing channels to these pins on the board be
kept open for possible future use. Please refer to the platform design guides for
more details.
Table 22. Si gnal Description (Sheet 5 of 7)
Name Type Description
Intel® Pentium® M Processor Datasheet 67
Pac kage Mechani cal Specifications and Pin In form at io n
SLP# Input
SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter
the Sleep state. During Sleep state, the processor stops providing internal clock
signals to all units, leaving only the Phase-Locked Loop (PLL) still operating.
Processors in this state will not recognize snoops or interrupts. The processor
will recognize only assertion of the RESET# signal, deassertion of SLP#, and
removal of the BCLK input while in Sleep state. If SLP# is deasserted, the
processor exits Sleep state and returns to Stop-Grant state, restarting its internal
clock signals to the bus and processor core units. If DPSLP# is asserted while in
the Sleep state, the processor will exit the Sleep state and transition to the Deep
Sleep state.
SMI# Input
SMI# (System Management Interrupt) is asserted asynchronously by system
logic. On accepting a System Management Interrupt, the processor saves the
current state and enter System Management Mode (SMM). An SMI
Acknowledge transaction is issued, and the processor begins program execution
from the SMM handler.
If SMI# is asserted during the deassertion of RESET# the processor will tristate
its outputs.
STPCLK# Input
STPCLK# (Stop Clock), when asserted, causes the processor to enter a low
power Stop-Grant state. The processor issues a Stop-Grant Acknowledge
transaction, and stops providing internal clock signals to all processor core units
except the system bus and APIC units. The processor continues to snoop bus
transactions and service interrupts while in Stop-Grant state. When STPCLK# is
deasserted, the processor restarts its internal clock to all units and resumes
execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK#
is an asynchronous input.
TCK Input
TCK (Test Clock) provides the clock input for the processor Test Bus (also
known as the Test Access Port).
Please refer to the ITP700 Debug Port Design Guide and the platform design
guides for termination requirements and implementation details.
TDI Input
TDI (Test Data In) transfers serial test data into the processor. TDI provides the
serial input needed for JTAG specification support.
Please refer to the ITP700 Debug Port Design Guide and the platform design
guides for termination requirements and implementation details.
TDO Output
TDO (Test Data Out) transfers serial test data out of the processor. TDO
provides the serial output needed for JTAG specification support.
Please refer to the ITP700 Debug Port Design Guide and the platform design
guides for termination requirements and implementation details.
TEST1,
TEST2,
TEST3
Input
TEST1, TEST2, and TEST3 must be left unconnected but should have a stuffing
option connection to VSS separately using 1-k, pull-down resistors. Please refer
to the platform design guides for more details.
THERMDA Other Thermal Diode Anode.
THERMDC Other Thermal Diode Cathode.
THERMTRIP# Output
The processor protects itself from catastrophic overheating by use of an internal
thermal sensor. This sensor is set well above the normal operating temperature
to ensure that there are no false trips. The processor will stop all execution when
the junction temperature exceeds approximately 125°C. This is signalled to the
system by the THERMTRIP# (Thermal Trip) pin.
For termination requirements please refer to the platform design guides.
TMS Input
TMS (Test Mode Select) is a JTAG specification support signal used by debug
tools.
Please refer to the ITP700 Debug Port Design Guide and the platform design
guides for termination requirements and implementation details.
Table 22. Si gnal Description (Sheet 6 of 7)
Name Type Description
68 Intel® Pentium® M Processor Datasheet
Packa ge M echanical Specifications and Pi n Infor ma t ion
TRDY# Input
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to
receive a write or implicit writeback data transfer. TRDY# must connect the
appropriate pins of both system bus agents.
TRST# Input
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be
driven low during power on Reset. Please refer to the ITP700 De bug P or t
D esign G uide and the platform design guides for termination requirements and
implementation details.
VCC Input Processor core power supply.
VCCA[3:0] Input VCCA provides isolated power for the internal processor core PLL’s. Refer to the
platform design guides for complete implementation details.
VCCP Input Processor I/O Power Supply.
VCCQ[1:0] Input
Quiet power supply for on die COMP circuitry. These pins should be connected
to VCC P on the motherboard. However, these connections should enable addition
of decoupling on the VCCQ lines if necessary.
VCCSENSE Output
VCCSENSE is an isolated low impedance connection to processor core power
(VCC). It can be used to sense or measure power near the silicon with little noise.
Please refer to the platform design guides for termination recommendations and
more details.
VID[5:0] Output
VID[5:0] (Voltage ID) pins are used to support automatic selection of power
supply voltages (Vcc). Unlike some previous generations of processors, these
are CMOS signals that are driven by the Intel Pentium M processor. The voltage
supply for these pins must be valid before the VR can supply Vcc to the
processor. Conversely, the VR output must be disabled until the voltage supply
for the VID pins becomes valid. The VID pins are needed to support the
processor voltage specification variations. See Table 3 for definitions of these
pins. The VR must supply the voltage that is requested by the pins, or disable
itself.
VSSSENSE Output
VSSSENSE is an isolated low impedance connection to processor core VSS. It can
be used to sense or measure ground near the silicon with little noise. Please
refer to the platform design guides for termination recommendations and more
details.
Table 22. Si gnal Description (Sheet 7 of 7)
Name Type Description
Intel® Pentium® M Processor Datasheet 69
Therm al Spe cif ic ations and Design C onsiderat ions
5The r mal S peci f ic ati ons a nd
Design Considerations
The Intel Pentium M processor requires a thermal solution to maintain temperatures within
operating limits. A complete thermal solution includes both component and system level thermal
management features. Component level thermal solutions include active or passive heatsinks or
hea t exc hangers attached to the p rocess or expos ed die. The solution should make fi rm contac t with
the die while maintaining processor mechanical specifications such as pressure. A typical system
level thermal solution may consist of a processor fan ducted to a heat exchanger that is thermally
coupled to the processor using a heat pipe or direct die attachment. A secondary fan or air from the
processor fan may also be used to cool other platform components or lower the internal ambient
temperature within the system. The processor must remain within the minimum and maximum
junction temperature (Tj) specifications at the corresponding Thermal Design Power (TDP) value
listed in Table 23. The maximum junction temperature is defined by an activation of the processor
Intel Thermal Monitor.
Refer to Section 5.1.2 for more details. Analysis indicates that real applications are unlikely to
cause the processor to consume the theoretical maximum power dissipation for sustained time
periods. Intel recommends that complete thermal solution designs target the Thermal Design
Power (TDP) indicated in Table 23. The Intel Thermal Monitor feature is designed to help protect
the processor in the unlikely event that an application exceeds the TDP recommendation for a
sustained period of time. For more details on the usage of this feature, refer to Section 5.1.2. In all
cases the Intel Thermal Monitor feature must be enabled for the processor to remain within
specification.
70 Intel® Pentium® M Processor Datasheet
Thermal Specificat ions and Design Considerations
Table 23. Power Sp ecif icati ons f or the Intel Pentium M Processor
NOTES:
1. The Thermal Design Power (TDP) specification should be used to design the processor thermal solution. The
TDP is not the maximum theoretical power the processor can dissipate.
Symbol Core Fr equency
& Vo ltage Therm al Desi gn Power U ni t Notes
TDP
1.70 GHz & 1.484 V
1.60 GHz & 1.484 V
1.50 GHz & 1.484 V
1.40 GHz & 1.484 V
1.30 GHz & 1.388 V
1.30 GHz & 1.180 V
1.20 GHz & 1.180 V
1.10 GHz & 1.180 V
1.10 GHz & 1.004 V
1.00 GHz & 1.004 V
900 MHz & 1.004V
600 MHz & 0.956 V
600 MHz & 0.844 V
24.5
24.5
24.5
22
22
12
12
12
7
7
7
6
4
W At 100°C, Notes 1, 4
Symbol Parameter Min Typ Max Unit Notes
PAH,
PSGNT
Auto Halt, Stop-Grant Power at:
1.484 V
1.388 V (Pentium M 1.30 GHz)
1.180 V
1.004 V (ULV Pentium M)
0.956 V
0.844 V (ULV Pentium M)
7.3
7.3
3.2
1.7
1.8
0.9
W At 5C, Note 2
PSLP
Sleep Power at:
1.484 V
1.388 V (Pentium M 1.30 GHz)
1.180 V
1.004 V (ULV Pentium M)
0.956 V
0.844 V (ULV Pentium M)
7.0
7.0
3.0
1.5
1.7
0.8
W At 5C, Note 2
PDSLP
Deep Sleep Power at:
1.484 V
1.388 V (Pentium M 1.30 GHz)
1.180 V
1.004 V (ULV Pentium M)
0.956 V
0.844 V (ULV Pentium M)
5.1
5.4
2.2
1.0
1.1
0.55
W At 3C, Note 2
PDPRSLP Deeper Sleep Power 0.55 W At 35°C, Note 2
PDPRSLP
ULV
Deeper Sleep Power (ULV
Pentium M only) 0.37 W At 35°C, Note 2
TJJunction Temperature 0 100 °C Notes 3, 4
Intel® Pentium® M Processor Datasheet 71
Therm al Spe cif ic ations and Design C onsiderat ions
2. Not 100% tested. These power specifications are determined by characterization of the processor currents at
higher temperatures and extrapolating the values for the temperature indicated.
3. As measured by the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic mode is used to
indicate that the maximum TJ has been reached. Refer to Section 5.1 for more details.
4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within
specifications.
5.1 Thermal Specifications
5.1.1 Ther mal Di ode
The Intel Pentium M processor incorporates two methods of monitoring die temperature, the Intel
Thermal Monitor and the thermal diode. The Intel Thermal Monitor (detailed in Section 5.1) must
be used to determine when the maximum specified processor junction temperature has been
reached. The second method, the thermal diode, can be read by an off-die analog/digital converter
(a thermal sensor) located on the motherboard, or a stand-alone measurement kit. The thermal
diode may be used to monitor the die temperature of the processor for thermal management or
instrumentation purposes but cannot be used to indicate that the maximum TJ of the processor has
been reached. Please see Section 5.1.2 for thermal diode usage recommendation when the
PROCHOT# signal is not asserted.
Table 24 and Table 25 provide the diode interface and specifications.
Note: The reading of the external thermal sensor (on the motherboard) connected to the processor
thermal diode signals, will not necessarily reflect the temperature of the hottest location on the die.
This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the
l ocation of the the rmal diode and the hot test location on the die , and time bas ed varia tions i n the die
temperature measurement. Time based variations can occur when the sampling rate of the thermal
diode (by the thermal sensor) is slower than the rate at which the TJ temperature can change.
The offset between the thermal diode based temperature reading and the Intel Thermal Monitor
reading can be characterized using the Intel Thermal Monitor’s automatic mode activation of the
thermal control circuit. This temperature offset must be taken into account when using the
processor thermal diode to implement power management events.
Table 24. Thermal Diode Inter face
Table 25. Thermal Diode Specifications
NOTES:
Signal Name Pi n/Ball Number Si gnal Description
THERMDA B18 Thermal diode anode
THERMDC A18 Thermal diode cathode
Symbol Parameter Min Typ Max Unit Notes
IFW Forward Bias Current 5 300 µANote 1
n Diode Ideality Factor 1.00151 1.00220 1.00289 Notes 2, 3, 4
RTSeries Resistance 3.06 ohms 2, 3, 5
72 Intel® Pentium® M Processor Datasheet
Thermal Specificat ions and Design Considerations
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not
support or recommend operation of the thermal diode when the processor power supplies are not within their
specified tolerance range.
2. Characterized at 100°C.
3. Not 100% tested. Specified by design/characterization.
4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode
equation:
IFW=Is *(e(qVD/nkT) -1)
Where IS = saturation current, q = electronic charge, VD
= voltage across the diode, k = Boltzmann Constant,
and T = absolute temperature (Kelvin).
5. The series resistance, RT
, is provided to allow for a more accurate measurement of the diode junction
temperature. RT as defined, includes the pins of the processor but does not include any socket resistance or
board trace resistance between the socket and the external remote diode thermal sensor. RT can be used by
remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term.
Another application is that a temperature offset can be manually calculated and programmed into an offset
regist e r in t he re m ot e d i ode therm al senso r s as exempl if ied by the equat ion :
Terror = [RT*(N-1)*IFWmin]/[(no/q)*ln N]
5.1.2 I nte l Therm al Monitor
The Intel Therm al Moni tor helps control the pr ocessor tempe rature by a ctivating t he TCC w hen the
processor silicon reaches its maximum operating temperature. The temperature at which the Intel
Thermal Monitor activates the thermal control circuit (TCC) is not user configurable and is not
software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched
(and serviced during the time that the clocks are on) while the TCC is active.
With a properly designed and characterized thermal solution, it is anticipated that the TCC would
only be activated for very short periods of time when running the most power intensive
applications. The processor performance impact due to these brief periods of TCC activation is
expected to be so minor that it would not be detectable. An under-designed thermal solution that is
not able to prevent excessive activation of the TCC in the anticipated ambient environment may
cause a noticeable performance loss, and may affect the long-term reliability of the processor. In
addition, a thermal solution that is significantly under designed may not be capable of cooling the
processor even when the TCC is active continuously.
The Intel Thermal Monitor controls the processor temperature by modulating (starting and
stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep® technology
transition when the processor silicon reaches its maximum operating temperature. The Intel
Thermal Monitor uses two modes to activate the TCC: Automatic mode and On-Demand mode. If
both modes are activated, Automatic mode takes precedence. The Intel Thermal Monitor
Automatic Mode must be enabled via BIOS for the processor to be operating within
specifications.There are two Automatic modes called Intel Thermal Monitor 1 and Intel Thermal
Monitor 2. These modes are selected by writing values to the Model Specific Registers (MSRs) of
the processor. After Automatic mode is enabled, the TCC will activate only when the internal die
temperature reaches the maximum allowed value for operation.
Likewise, when Intel Thermal Monitor 2 is enabled, and a high temperature situation exists, the
processor will perform an Enhanced Intel SpeedStep technology transition to a lower operating
point. When the processor temperature drops below the critical level, the processor will make an
Enhanced Intel S peedS tep tec hnology tr ansit ion to the l ast r equest ed ope rati ng point . Intel Ther mal
Monitor 2 is the recommended mode on the Intel Pentium M processor.
If a processor load-based Enhanced Intel SpeedStep technology transition (through MSR write) is
initiated when an Intel Thermal Monitor 2 period is active, there are two possible results:
1.If the processor load based Enhanced Intel SpeedStep technology transition target
f requency is higher than the Intel Thermal Monitor 2 transition based target frequency, the
pr ocessor load-ba sed tra nsition will be defer red until the I ntel Ther mal Monit or 2 event has
been completed.
Intel® Pentium® M Processor Datasheet 73
Therm al Spe cif ic ations and Design C onsiderat ions
2.If the processor load-based Enhanced Intel SpeedStep technology transition target
frequency is
lower than t he Intel The rmal Monitor 2 tr ansit ion based tar get fr equency , the processor will
transition to the processor load-based Enhanced Intel SpeedStep technology target
frequency point.
When Intel Thermal Monitor 1 is enabled, and a high temperature situation exists, the clocks will
be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are
processor speed dependent and will decrease linearly as processor core frequencies increase. After
the temperature has returned to a non-critical level, modulation ceases and the TCC goes inactive.
A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the
TCC when the processor temperature is near the trip point. The duty cycle is factory configured
and cannot be m odif ied. Also, Autom atic m ode does not requi re any addi ti onal hardware, soft war e
drivers or interrupt handling routines. Processor performance will be decreased by the same
amount as the duty cycle when the TCC is active, however, with a properly designed and
characterized thermal solution the TCC most likely will never be activated, or will be activated
only briefly during the most power intensive applications.
The TCC may also be activated using On-Demand mode. If bit 4 of the ACPI Intel Thermal
Monitor Control Regis ter i s wr it ten to a "1", the T CC will be ac tiva ted immediate ly , i ndependent of
the processor temperature. When using On-Demand mode to activate the TCC, the duty cycle of
the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor
Control Register. In Automatic mode, the duty cycle is fixed at 50% on, 50% off, in On-Demand
mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in
12.5% increments. On-Demand mode can be used at the same time Automatic mode is enabled,
however, if the system tries to enable the TCC via On-Demand mode at the same time Automatic
mode is enabled and a high temperature condition exists, Automatic mode will take precedence.
An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its
temperature is above the thermal trip point. Bus snooping and interrupt latching are also active
while the TCC is active.
Note: PROCHOT# will not be asserted when the processor is in the Stop-Grant, Sleep, Deep Sleep, and
Deeper Sleep low power states (internal clocks stopped), hence the thermal diode reading must be
used as a safeguard to maintain the processor junction temperature within the 100 °C (maximum)
specification. If the platform thermal solution is not able to maintain the processor junction
temperature within the maximum specification, the system must initiate an orderly shutdown to
prevent damage. If the processor enters one of the above low power states with PROCHOT#
already asserted, PROCHOT# will remain asserted until the processor exits the low power state
and the processor junction temperature drops below the thermal trip point.
If Automatic mode is disabled the processor will be operating out of specification. Whether the
automatic or On-Demand modes are enabled or not, in the event of a catastrophic cooling failure,
the processor will automatically shut down when the silicon has reached a temperature of
approximately 125 °C. At this point the system bus signal THERMTRIP# will go active.
THERMTRIP# activation is independent of processor activity and does not generate any bus
cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the
time specified in Chapter 3.
74 IIntel® Pentium® M Processor Datasheet
Thermal Specificat ions and Design Considerations
This page intentionally left blank.
Intel® Pentium® M Processor Datasheet 75
Debug Tools Specif ications
6Debug T ools Specifications
Please refer to the ITP700 Debug Port Design Guide and the platform design guides for
information regarding debug tools specifications.
6.1 Logic Analyzer In terface (LAI)
Intel is working with logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use in
debugging Intel Pentium M processor systems. The following information is general in nature.
Specific information must be obtained from the logic analyzer vendor.
Due to the complexity of Intel Pentium M processor systems, the LAI is critical in providing the
ability to probe and capture system bus signals. There are two sets of considerations to keep in
mind when designing an Intel Pentium M processor system that can make use of an LAI:
mechanical and electrical.
6.1.1 Mechanic al Considera ti ons
Th e LAI i s install ed betw een th e proces sor socket and t he In te l Pen ti um M proces sor. The L AI pins
plug into the socket, while the Intel Pentium M processor pins plug into a socket on the LAI.
Cabling that is part of the LAI egresses the system to allow an electrical connection between the
Intel Pentium M processor and a logic analyzer. The maximum volume occupied by the LAI,
known as the keepout volume, as well as the cable egress restrictions, should be obtained from the
logic analyzer vendor. System designers must make sure that the keepout volume remains
unobstructed inside the system.
6.1.2 Electrical Considerations
The LAI will also affect the electrical performance of the system bus; therefore, it is critical to
obtain electrical load models from each of the logic analyzers to be able to run system level
simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for
electrical specifications and load models for the LAI solution they provide.
Home Intel® Processors Intel® Pentium® Mobile Processor Intel® Pentium® M Processor 700 Series
Intel® Pentium® M Processor LV 738
(2M Cache, 1.40 GHz, 400 MHz FSB)
SPECIFICATIONS
All
Essentials
Memory Specifications
Package Specifications
Advanced Technologies
COMPATIBLE PRODUCTS
BLOCK DIAGRAMS
ORDERING / SSPECS /
STEPPINGS
Status
Launch Date
Processor Number
# of Cores
# of Threads
Clock Speed
L2 Cache
Bus/Core Ratio
FSB Speed
FSB Parity
Instruction Set
Embedded Options Available
Supplemental SKU
Lithography
Max TDP
VID Voltage Range
Recommended Customer Price
Physical Address Extensions
ECC Memory Supported
Specifications
Essentials
Launched
Q2'04
738
1
1
1.4 GHz
2 MB
14
400 MHz
No
32-bit
Yes
No
90 nm
10 W
0.988V-1.116
V
TRAY: $218
Memory Specifications
32-bit
No
Compare Queue (0) Send Feedback English
Pa
g
e 1 of 3Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 MHz FSB)
18-Jun-2012htt
p
://ark.intel.com/
p
roducts/27603/Intel-Pentium-M-Processo
r
-LV-738-
(
2M-Cache-1
_
...
“Announced” SKUs are not
Please refer to the Launch D
availability.
The Recommended Custom
e
are for direct Intel customers
etc. not included. Prices ma
y
special promotional arrange
m
formal pricing offer from Intel
obtain a formal price quotati
o
"Intel classifications" consist
Harmonized Tariff Schedule
without recourse to Intel and
regarding the proper ECCN
o
such, your company is resp
o
the time of export.
Intel processor numbers are
differentiate features within
e
See http://www.intel.com/pr
o
Hyper-Threading Technolog
y
processor supporting HT Te
c
operating system. Performa
n
you use. See www.intel.com
/
including details on which pr
o
64-bit computing on Intel® a
r
chipset, BIOS, operating sys
t
architecture. Processors will
architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vend
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved with Intel® Turbo Boost Technology, which requir
e
capability. Intel Turbo Boost Technology performance varies depending on hardware, software, and overall system configuration. Check wi
t
Turbo Boost Technology. See www.intel.com/technology/turboboost/ for more information.
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating sy
s
system delivers Execute Disable Bit functionality.
Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some
performance or other benefit will vary depending on hardware and software configurations. Intel Virtualization Technology-enabled VMM a
p
System and Maximum TDP is based on worst case scenarios. Actual TDP may be lower if not all I/Os for chipsets are used.
A
ll information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications,
information herein is provided "as-is" and Intel does not make any representations or warranties whatsoever regarding accuracy of the infor
compatibility of the products listed. Please contact system vendor for more information on specific products or systems.
Low Halogen: Applies only to brominated and chlorinated flame retardants (BFRs/CFRs) and PVC in the final product. Intel components as
JS-709 requirements, and the PCB / substrate meet IEC 61249-2-21 requirements. The replacement of halogenated flame retardants and/
o
Some products can support AES New Instructions with a Processor Configuration update, in particular, i7-2630QM/i7-2635QM, i7-2670QM
/
contact OEM for the BIOS that includes the latest Processor configuration update.
TJUNCTION
Package Size
Processing Die Size
# of Processing Die Transistors
Sockets Supported
Low Halogen Options Available
Intel® Turbo Boost Technology
Intel® Hyper-Threading Technology
Intel® Virtualization Technology (VT-x)
Intel® Trusted Execution Technology
Intel® 64
Idle States
Enhanced Intel SpeedStep® Technology
Intel® Demand Based Switching
Execute Disable Bit
Package Specifications
100°C
35mm x 35mm
87 mm2
144 million
H-PBGA479
See MDDS
Advanced Technologies
No
No
No
No
No
No
Yes
No
Yes
©
Intel
*Trademarks
Pa
g
e 2 of 3Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 MHz FSB)
18-Jun-2012htt
p
://ark.intel.com/
p
roducts/27603/Intel-Pentium-M-Processo
r
-LV-738-
(
2M-Cache-1
_
...
Corporation
Pa
g
e 3 of 3Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 MHz FSB)
18-Jun-2012htt
p
://ark.intel.com/
p
roducts/27603/Intel-Pentium-M-Processo
r
-LV-738-
(
2M-Cache-1
_
...
6/18/12 Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 MHz FSB)
1/2ark.intel.com/products/27603/Intel-Pentium-M-Processor-LV-738-(2M-Cache-1_40-GHz-400-MHz-FSB)…
Home Inte l® Processors Intel® Pentium ® Mobile Processor Intel® Pentium ® M Processor 700 Series 738
Intel® PentiuM Processor LV 738
(2M Cache, 1.40 GHz, 400 MHz FSB)
“Announced” SKUs are not yet available. Please refer to the Launch Date for market availability.
The Recommended Customer Price (“RCP) is pricing guidance for Intel products. Prices are for direct Intel customers and are subject to change w ithout notice. Taxes and shipping, etc. not included.
Prices may vary for other package types and shipment quantities, and special promotional arrangements may apply. Listing of these RCP does not constitute a formal pricing offer from Intel. Please
w ork w ith your appropriate Intel representative to obtain a formal price quotation.
"Intel classifications" consist of Export Control Classification Numbers (ECCN) and Harmonized Tariff Schedule (HTS) numbers. Any use made of Intel classifications are w ithout recourse to Intel and
shall not be construed as a representation or w arranty regarding the proper ECCN or HTS. Your company may be the exporter of record, and as such, your company is responsible for determining the
correct classification of any item at the time of export.
Intel processor numbers are not a measure of perf ormance. Processor numbers differentiate features w ithin each processor family, not across different processor families. See
http://w w w .intel.com/products/processor_number for details.
Hyper-Threading Technology (HT Technology) requires a computer system w ith an Intel® processor supporting HT Technology and an HT Technology enabled chipset, BIOS and operating system.
Performance w ill vary depending on the specific hardw are and softw are you use. See w w w .intel.com/products/ht/hyperthreading_more.htm f or more information including details on w hich
processors support HT Technology.
64-bit computing on Intel® architecture requires a computer system w ith a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Processors
w ill not operate (including 32-bit operation) w ithout an Intel 64 architecture-enabled BIOS. Performance w ill vary depending on your hardw are and softw are configurations. Consult w ith your system
vendor for more information.
Max Turbo Frequency refers to the maximum single-core frequency that can be achieved w ith Intel® Turbo Boost Technology, w hich requires a PC w ith a processor w ith Intel Turbo Boost Technology
capability. Intel Turbo Boost Technology performance varies depending on hardw are, softw are, and overall system configuration. Check w ith your PC manufacturer on w hether your system delivers
Intel Turbo Boost Technology. See w w w .intel.com/technology/turboboost/ for more information.
Enabling Execute Disable Bit functionality requires a PC w ith a processor w ith Execute Disable Bit capability and a supporting operating system. Check w ith your PC manufacturer on w hether your
system delivers Execute Disable Bit functionality.
Intel® Virtualization Technology requires a computer system w ith a processor, chipset, BIOS, virtual machine monitor (VMM) and for some uses, certain platform softw are, enabled for it. Functionality,
performance or other benefit w ill vary depending on hardw are and softw are configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.
System and Maximum TDP is based on w orst case scenarios. Actual TDP may be low er if not all I/Os for chipsets are used.
All information provided is subject to change at any time, w ithout notice. Intel may make changes to manufacturing life cycle, specifications, and product descriptions at any time, w ithout notice. The
information herein is provided "as-is" and Intel does not make any representations or w arranties w hatsoever regarding accuracy of the information, nor on the product features, availability,
functionality, or compatibility of the products listed. Please contact system vendor for more information on specific products or systems.
Low Halogen: Applies only to brominated and chlorinated flame retardants (BFRs/CFRs) and PVC in the final product. Intel components as w ell as purchased components on the finished assembly meet
JS-709 requirements, and the PCB / substrate meet IEC 61249-2-21 requirements. The replacement of halogenated flame retardants and/or PVC may not be better for the environment.
Some products can support AES New Instructions w ith a Processor Configuration update, in particular, i7-2630QM/i7-2635QM, i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Please
contact OEM for the BIOS that includes the latest Processor configuration update.
SPECIFICATIONS
COMPATIBLE PRODUCTS
BLOCK DIAGRAMS
ORDERING / SSPECS /
STEPPINGS
All
Ordering / sSpecs / Steppings
Retired and Discontinue d
ORDERING AND SPEC INFORMATION
Ordering and Spec Information
Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 M Hz FSB) uFCBGA Pb-Free SLI, Tray
Socket Step Step TDP Ordering Code Spec Code VT-x ECCN CCATS US HTS RCP
H-PBGA479 10 W LE80536LC0172M SL89N No 3A991.A.2 NA 8473301180-MPU $218
Retired and Discontinued
Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 M Hz FSB) uFCBGA Pb-Free SLI, Tray
Socket Step Step TDP Ordering Code Spec Code VT-x ECCN CCATS US HTS RCP
H-PBGA479 C1 10 W LE80536LC0172M SLJ8U No 3A991.A.1 NA 8473301180-MPU N/A
Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 M Hz FSB) uFCBGA, Tray
Socket Step Step TDP Ordering Code Spec Code VT-x ECCN CCATS US HTS RCP
H-PBGA479 C1 10 W RJ80536LC0172M SLJ95 No 3A991.A.1 NA 8473301180-MPU N/A
Compare Queue (0) Send Feedback
Type Here to Search Products
English
6/18/12 Intel® Pentium® M Processor LV 738 (2M Cache, 1.40 GHz, 400 MHz FSB)
2/2ark.intel.com/products/27603/Intel-Pentium-M-Processor-LV-738-(2M-Cache-1_40-GHz-400-MHz-FSB)…
©Intel
Corporation
*Trademarks