DE 2848352 0000130 9

D T-33-13

DIODE TRANSISTOR CO., INC.

84D 00130

(201) 686-0400 • Telex: 139-385 • Outside NY & NJ area call TOLL FREE 800-526-4581 FAX No. 201-575-5883

84

PN Comp Type# mer	ile- VCEO(it (Vol	ts) Max	hFE @lc/Vce (Min-Max @A/V)	VCE(SAT) @IC/IB (V@A/A)	¥8E @IC/¥CE (¥@ A /¥)	I CEY @VCE (mÅ @ V)	PD@ Tc=25 (Watts	°C T = 1sec	fr (MHz)	ton @lc/lb (\$@A/A)	tOFF @lc/lb (\$@A/A)
2N 1936 2N 1937 2N 3265 2N 3265 2N 3597 2N 3599 2N 4210 2N 4210 2N 4210 2N 4210 2N 4210 2N 4002 2N 4002 2N 4002 2N 4003 2N 5733 2N 5968 2N 6046 2N 6047 2N 6048 2N 6046 2N 6047 2N 6048 2N 604	60 80 90 60 40 60 80 80 130 100 100 100 100 100 100 120 120 300 200 200	20 20 20 20 20 20 20 20 20 20 20 20 20 2	10-50@ 10/10 10-50@ 10/10 25-55@ 15/2 20-80@ 15/3 40-120@ 10/2 40-120@ 10/2 40-120@ 10/2 20-100@ 10/6 20-75@ 10/5 20-80@ 15/4 20-80@ 15/4 20-80@ 15/4 20-100@ 20/4 20-100@ 20/4 20-100@ 20/4 20-120@ 20/4 30-120@ 20/4 30-120@ 20/4 30-120@ 20/4 30-120@ 20/4 30-120@ 20/4 30-200@ 5/5 40-200@ 5/5 40-200@ 5/5 40-200@ 5/5	.75@ 10/1.6 .75@ 10/1.6 1@ 20/2 1.6@ 20/2 1.5@ 20/2 1.5@ 20/2 1.5@ 20/2 1.5@ 20/2 1.5@ 20/2 1.6@ 10/1 1@ 10/1 1@ 10/1 1.2@ 30/4 1.2@ 30/4 1.2@ 20/2 .8@ 10%1 1.2@ 20/2 1.5@ 50/5 1.2@ 20/2 1.2@ 20/2 1.2@ 20/2 1.2@ 20/2 1.2@ 20/2 1.2@ 20/2 1.5@ 10/1.6 1@ 15/2 1@ 15/2 1.6% 20/2	$\begin{array}{c} 1.25 @ 10/3 \\ 1.25 @ 10/3 \\ 1.25 @ 10/3 \\ 1.8^3 @ 20/2 \\ 2.2^3 @ 20/2 \\ 2.2^3 @ 20/2 \\ 1.2 @ 10/2 \\ 1.2 @ 10/2 \\ 1.2 @ 10/2 \\ 1.6 @ 10/6 \\ 1.6 @ 10/6 \\ 1.6 @ 10/8 \\ 1.5^3 @ 15/1.5 \\ 1.8 @ 30/4 \\ 1.5^3 @ 15/1.5 \\ 1.8 @ 30/4 \\ 1.5^3 @ 20/2 \\ 2.5^3 @ 40/4 \\ 2^3 @ 20/1.33 \\ 2^3 @ 20/1.33 \\ 2^3 @ 20/1.33 \\ 2^3 @ 20/1.33 \\ 2^3 @ 20/1.33 \\ 2^3 @ 20/2 \\ 1.8^3 @ 20/2 \\ 1.8^3 @ 20/2 \\ 1.8^3 @ 20/2 \\ 1.8^3 @ 20/2 \\ 1.2 @ 10/3 \\ 1.2 @ 10/3 \\ 1.2 @ 10/3 \\ 1.4 @ 15/4 \\ 1.4 @ 15/4 \\ 2.5 @ 30/5 \\ \end{array}$	10@ 120 10@ 120 20@ 150 20@ 120 .01@ 60 .01@ 80 .5'@ 100 .5'@ 100 .5'@ 100 .5'@ 100 .5'@ 100 .5'@ 100 .5'@ 100 .5'@ 100 .2@ 100 .01@ 120 .01@ 120 .01@ 140 .01@ 160 .01@ 180 2'@ 300 2'@ 400 2'@ 300	150 150 100 100 100 100 100 100 100 100	5@30 5@30 .35@75 .70@50 4@25 4@25 4@25 4@25 3.3@30 8@12.5 8@12.5 5@25 5.2@22 5.2@20 7.5@20 7.5@20 7.5@20	4.0 40 20 20 30 30 30 30 30 30 30 30 30 3	.5@ 15/1.2 .5@ 15/1.2 .7@ 10/1 .7@ 10/1 .7@ 10/1 .7@ 10/1 1@ 15/1.5 .7@ 10½1 .5@ 30/3 .6@ 20/1.33 .6@ 20/1.33 .6@ 20/1.33 .6@ 20/1.33 .5@ 40/4 1@ 25/1.25 .35@ 20/2 .35@ 20/2 .35@ 20/2 .35@ 20/2 .35@ 20/2 .35@ 20/2 .4@ 10/2 4@ 10/2 4@ 10/2 4@ 10/2	2@ 15/1.2 2@ 15/1.2 2.7@ 10/1 2.7@ 10/1 2.7@ 10/1 2.7@ 10/1 3@ 15/1.5 3@ 15/1.5 3@ 15/1.5 4@ 10/1 1@ 30/3 .9@ 20/1.33 .9@ 20/1.33 1@ 40/4 1.25@ 25/1.25 1.05@ 20/2 1.05@ 20/2 1.05@ 20/2 1.05@ 20/2 7@ 10/2 7@ 10/2 7@ 10/2 7@ 10/2

Epitaxial-Base N-P-N and P-N-P Families

Туре No.		V _{CEV} (sus) V	PT W	hFE			V _{CE} (sat)V			fT
					IC A	V _{CE} V		IC A	l _B A	(Typ.) MHz
2N6247 FAM Complementa PT to 160 W n	ary to 2N371	pitaxial-Bas 6 and 2N64	e, High Pe 72 Familie	ower, es			• <u></u>	. .	JEDEC T	D-204MA/TO-3 Package
2N6469	- 40	- 50‡	125	20-150	-5	-4	1.3	-5	- 0.5	· · · · · · · · · · · · · · · · · · ·
2N6594	- 40	- 45‡	115	15-200	-4	-3	1.5	-4	-0.4	
2N4904	- 40	—	87.5	25-100	- 2.5	-2	-1	- 2.5	- 0.25	
2N5871	- 60		115	20-100	2.5	-4	-2	-7	- 1,75	
2N5875	- 60	-	150	20-100	-4	-4	-3	- 10	- 2.5	
2N5879	-60		160	20-100	-6	-4	-4	- 15	- 3.75	
2N6246	- 60	- 70‡	125	20-100	-7 [']	-4	- 1.3	-7	- 0.7	
BDX18	- 60	- 70‡	115	20-70	-4	-4	- 1.1	-4	-0.4	
MJ2955	- 60	- 70‡	150	20-70	-4	-4	- 1.1	-4	-0.4	
2N4905	- 60	-	87.5	25-100	- 2.5	2	-1	- 2.5	- 0.25	16
2N3791	-60		150	30-150	-1	-2	-1	-5	- 0.5	
BD312	- 60	-	150	25 min.	5	- 4	- 1	- 5	0.5	
BD314	- 80	-	150	25 min.	-4	- 4	- 1	- 5	- 0.5	
2N5872	- 80	-	115	20-100	- 2.5	-4	-2	-7	- 1.75	
2N5876	- 80	-	150	20-100	-4	-4	-3	- 10	- 2.5	
2N5880	- 80		160	20-100	-6	-4	-4	- 15	- 3.75	
2N6247	- 80	- 90‡	125	20-100	-6	4	- 1.3	-6	- 0.6	
2N4906	- 80		87.5	25-100	- 2.5	-2	-1	- 2.5	- 0.25	
2N3792	- 80	-	150	50-150	-1	-2	1	5	- 0.5	
2N6248	- 100	<u> </u>	125	20-100	-5	-4	- 1.3	-5	- 0.5	